NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ENHANCING NETWORK COMMUNICATION
IN NPSNET-V VIRTUAL ENVIRONMENTS
USING XML-DESCRIBED
DYNAMIC BEHAVIOR (DBP) PROTOCOLS

by
William D. Fischer
September 2001

Thesis Advisor: Don McGregor
Co-Advisor: Don Brutzman

Approved for public release; distribution is unlimited

THISPAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leaveblank) | 2. REPORT DATE

September 2001

3. REPORT TYPE AND DATES COVERED
Master’sThesis

4. TITLE AND SUBTITLE: Enhancing Network Communication in NPSNET -V
Virtual Environments using XM L-Described Dynamic Behavior (DBP) Protocols

5. FUNDING NUMBERS

6. AUTHOR William D. Fischer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School

8. PERFORMING
ORGANIZATION REPORT

Monterey, CA 93943-5000

NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

policy or position of the Department of Defense or the U.S. Government.

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT

The existing component protocols, aswell as new protocols introduced at runtime into NPSNET -V are written in
their native programming language. Asaresult, they require authoring and compiling by a trained programmer. The long time
frame required to change or introduce new protocols into NPSNET -V, adynamically extensible virtua environment, detracts
from the dynamicism of the virtual environment. Networking optimization thresholds to support NPSNET -V needed to be
determined to ensure that the networking is performed efficiently, and system resources to other systems, such as graphics
rendering, are maximized.

This thesis implements component protocols described using Extensible Markup Language (XML) into NPSNET-V.
These protocols are created with different fidelity resolutions for each protocol, which can be swapped at runtime based on the
network state. Network testing was performed to find the ideal maximum packet rates based on the impact on CPU utilization
and packet loss. By using XML, non-programmers can edit protocols for inclusion in asimulation at runtime.

Important contributions include adding protocols to NPSNET -V with high-resolution and low-resolution versions,
described by XML documents. Basic network optimization is added to NPSNET-V to take advantage of the protocols
resolution switching ability. The network testing revealed a linear correlation between the packet sending rate and CGPU
utilization, and a polynomial correlation between the packet sending rate and percentage packet 10ss.

14. SUBJECT TERMS
Network Monitoring, Virtua Environments, NPSNET, VRTP, Dynamic Behavior Prtocol (DBP),
XML

15. NUMBER OF
PAGES
136

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Sandard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THISPAGE INTENTIONALLY LEFT BLANK

ENHANCING NETWORK COMMUNICATION IN
NPSNET-V VIRTUAL ENVIRONMENTS ~
USING XML DESCRIBED DYNAMIC BEHAVIOR (DBP) PROTOCOLS

William D. Fischer
Major, United States Army
B.S., College of William and Mary, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
September 2001

Author: G)/L D Jl

‘William D. Fischer

/'
Approved by: e L
Don McGregor, Thesis Advisor

SR~

Don Brut&m’an Co-Advisor

At A

" (hris Eagdle,
Computer Science D artment

hY

iii

THISPAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The existing component protocols, as well as new protocols introduced at runtime
into NPSNET-V are written in their native programming language. As aresult, they
require authoring and compiling by atrained programmer. The long time frame required
to change or introduce new protocols into NPSNET-V, adynamically extensible virtual
environment, detracts from the dynamicism of the virtual environment. Networking
optimization thresholds to support NPSNET-V needed to be determined to ensure that the
networking is performed efficiently, and system resources to other systems, such as
graphics rendering, are maximized.

This thesis implements component protocols described using Extensible Markup
Language (XML) into NPSNET-V. These protocols are created with different fidelity
resolutions for each protocol, which can be swapped at runtime based on the network
state. Network testing was performed to find the ideal maximum packet rates based on
the impact on CPU utilization and packet loss. By using XML, nonprogrammers can
edit protocols for inclusion in asimulation at runtime.

Important contributions include adding protocols to NPSNET-V with high-
resolution and low-resolution versions, described by XML documents. Basic network
optimization is added to NPSNET-V to take advantage of the protocols’ resolution
switching ability. The network testing revealed a linear correlation between the packet
sending rate and CPU utilization, and a polynomial correlation between the packet

sending rate and percentage packet loss.

THISPAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

INTRODUCTION ...ttt se sttt sae e s sesbesresseeseeseesensessessessessesns 1
A. BACKGROUND ..ottt sttt ne e ens 1
B. MOTIVATION ittt sttt sae b e ens 1
C. OBJIECTIVES ...ttt st 2
D. THESISORGANIZATION ..ottt e nne s 5
BACKGROUND AND RELATED WORKoooiiiiiiieierie e 7
A. INTRODUCTION ..ottt sttt ee e ssesseseessesnesnens 7
B. DESIGN PATTERNS.......o oottt 7
1. Design PatterNS M OtIVAtiON..........coerieieierese s 7
2. SINGIELON Pater N.....oeeeeeeece e 8
3. ODSErVEr PatterN......cceeieiieiieeee et s 8
4. Model / View / Controller (MVC) Pattern........cccoceeeeeeieneneneneene. 9
C. NETWORK MONITORING......cocotiirininieierie e 9
1 Networ k Performance Evaluationscccccoveeveneenenieneeneeie e 9
2. Network Evaluation TeChNiqQUES..........cccovviirinineeieeee e 10
D. EXTENSIBLE MARKUP LANGUAGE (XML) c.ooovviiiririeienene e 10
E. TEAPOT WORLD ..ottt 11
F RELATED WORK - AREA OF INTEREST MANAGEMENT
(2O 1 1 TS 12
G. VIRTUAL REALITY TRANSFER PROTOCOL (VRTP)....ccceoereririrriennnn 14
1. Breakthroughsand Bottlenecks..........cccovieiiiiiiiinnineseeee e 14
2. Real-time Transport ProtoColccceverenenenenenineeeesee e 14
3. NPSNET -V ettt b 15
H. SUMMARY ettt st sttt e e s et sbe b nrenns 15
NPSNET -V .ttt sttt e te s aesbe s seeaeeseese e s e e e sessentessennennens 17
A. INTRODUCTION ..ottt st s 17
B. MODEL / VIEW / CONTROLLERocoiiiiere et 17
C. ENTITIES ..ottt st na e tesnennenneas 18
1. ENGILY MASIENS ..o 18
2. ENity GROSES ..o e 18
3. LDAP SEIVEL ..ttt e et snesnenne s 19
4, NEtWOr KiNG OVEI VIBW......coiviiiiiirienieeeeeeee e 19
D. DYNAMIC BEHAVIOR PROTOCOL (DBP)cccceiiriririeieniene e 21
E. ENTITY DISPATCHER ..ot 22
F. PROTOGCOLS ...ttt st nne e snesnenneas 22
1. ProtocolSin NPSNET-V ..o 22
2. NPSNET-V Foundation ProtoCols..........cccererienieenienienneenieseesieeees 23
3. DBP ProtOCOIS.....coiiiieeiesieesieee et 23
G. NETWORK CHANNELScco it 24
1. CRANNEIS.....ceie et 24
2. Channel Manager ..o 24

VI.

H. LYY 2 24
DESIGN OF EXPERIMENTS ..ottt ettt 27
A. INTRODUCTION ..ot ectee ettt estes e sebesssesesaessaassbessseesssessneeens 27
B. DBP PROTOGCOLS ...ttt sttt 27
C. NETWORK MONITOR ..ottt ettt sve e ereesreesneesnneens 28
D. EVALUATION STUDY ..ottt ettt svessvessaessvessnneens 30
E. EVALUATION TECHNIQUES........c.oo ettt 33
1. S 4101 = 1] o PP 33

2. LY== S = 11] 33

F. I I O S 33
1. (= 1< = SRR 33

2. BaNAWIAth........vveiiiceeeie s 34

3. PacketS Par SECONG......c.coiiriiririerere e 34

4, CPU USAQE......oiiiiiiiiiie ettt sttt st sre e s s 36

G. TESTING . ..ottt ettt st s ae e s be e ebesenbeesaeesateesreennns 37
1. Determining Benchmarkscocooeiinineeeeee e 37

2. [o) (000 37

a. EMPLty ProtoColcccoviiiiiieiicee e 37

b. DBP ProtoCOL.........cocviiiiiiieiie ettt 38

3. TESt ENVIFONMENT ...ttt s 38

H. PACKET RESOLUTIONS..... oottt 39
1.] =] SR 39

2. (@) (1< g =0 (0 o0 £ RRTR 39

l. LAY 2 39
EXPERIMENTAL RESULTS AND ANALYSIS.....coieeeececeecee e 41
A. INTRODUCTION ..ottt ettt etee et eetes s eetessseeesae s saeesbessssesssessnneens 41
B. DBP PROTOCOLS ...ttt 41
1 Protocol SWITCNING ...coiieceece e 41

2. XML DESCIIPLIONS ...ttt 45

C. NETWORK MONITOR ANALYSIS ... 46
D. METRICSANALYSIS... . ettt 48
1. Ethernet PACket LOSS......cceeiiiiiiiie ittt 48

2 MODEM PACKEL LOSS......c.veiiiiiiiiieiieeeeeeeesteie e steee s et e s svee e e 52

3. Ethernet CPU USAgE.......ccciuieieiierie ettt 52

4, MOdemM CPU USAQE.......coiieieeiiiierieeie ettt 59

5 Ethernet CycliC BENAVIONcoeriiieieieie e 59

6 Modem Packets Per SECoNd..........ccceevcveeiiiiecciee e 59

D. SUMMARY ettt st e e et e s s bt e s sbae s sbeeesbeessabeneins 60
CONGCLUSIONS ...ttt et ae et e e e ebe s s atesbessnaeebeesaneesbenanns 62
A. INTRODUCTION. ...ttt ettt ettt sbae s sbr e sbee e saree s 62
B. ANALY SIS oo e s s ba e s s be e s be e e saree s 62
1. CPU ULHTIZALION ..ttt 62

2. 10 = A I 01 R 63

C. FUTURE WORK ...ttt ettt svee s s s e s sabe e s snne e s snrs 64

1 N Ao g 1\ =T =T 1= S 64

2. MUIti-AgeNt MONITOK ..o s 66
D. CONTACT INFORMATION ...ocueiiieieceeseeie e ste e see s ete e sne e sneesse e snee s 67
APPENDIX A .ottt bbbt e ettt bR bRt ettt st e b e nbenne s 68
A. INTRODUCTION ..ottt 68
B. DBP TRANSFORM JAVA SOURCE CODE.......cccoccenirrnieneee e 68

C. DBP TRANSFORM HIGH RESOLUTION XML SOURCE
DOCUMENT L.ttt st nae st sre b nneas 73
D. DBP TRANSFORM LOW RESOLUTION XML SOURCE DOCUMENT...75
E. SUMMARY ittt sttt b e bbb b nne s 77
APPENDIX B ..ottt sttt ettt st b e bbbt ettt ae b e nnennean 78
A. INTRODUCTION ..ottt 78
B. DBP INERTIA JAVA SOURCE CODE......ccoioiiiereeseee e 78
C. DBP INERTIA HIGH RESOLUTION SOURCE DOCUMENT.......ccoovruenne. 86
D. DBP INERTIA LOW RESOLUTION SOURCE DOCUMENTcccevvruenne 88
E. SUMMARY ..ottt st be e sreesaeeeeeneesaeeneenneenes 90
APPENDIX C ..ottt sttt b bbb bbbttt e et et e nbenne s 92
A. INTRODUCTION ..ottt sttt sttt sre s 92
B. DBP ANIMATION JAVA SOURCE CODE.......cccoootiierieieneeneee e 92
C. DBP ANIMATION HIGH RESOLUTION SOURCE DOCUMENT 97
D. DBP ANIMATION LOW RESOLUTION SOURCE DOCUMENT............... 98
E. SUMMARY ..ottt ettt sttt sttt ne e b e nnenne e 99
N o =115 5 0 S 100
A. INTRODUCTION ..ottt sttt s 100
B. DBP ACCELERATION JAVA SOURCE CODEcccooceiiiiineereeeeeeeee 100

C.DBP ACCELERATION HIGH RESOLUTION SOURCE DOCUMENT ...106
D. DBP ACCELERATION LOW RESOLUTION SOURCE DOCUMENT108

E. SUMMARY ..o 109
APPENDIX E ..ot et 110
A. INTRODUCTION ..ottt 110
B. DBP ARTICULATION JAVA SOURCE CODE.......c.cccciiiiiiriinicicecnee 110
C. DBPARTICULATION HIGH RESOLUTION SOURCE DOCUMENT116
D. DBP ARTICULATION LOW RESOLUTION SOURCE DOCUMENT117
E. SUMMARY ..o s 118
APPENDIX Foe et 120
A. INTRODUCTION ...t nne e 120
B. DBP PROTOCOL EDITOR ...ccociiiiiiiiii s 120
C. DBP DATA-TYPE DEFINITION (DTD) ...oeciiiiiiienisiesieseeeeeeeeseesie e 121
D. DBP PROFILE. ... et 124
E. SUMMARY ..o s 126
LIST OF REFERENCESooi e 127
INITIAL DISTRIBUTION LIST ..o 130

THISPAGE INTENTIONALLY LEFT BLANK

LIST OF FIGURES

Figure 1. TheSiS ODJECTIVES.......ccciiieiieieeee e 4
Figure 2. Network Performance Evaluation Steps (Jain, 91)ccccovvveeveeresiieseese e seeseeenens 9
Figure 3. Inheritance hierarchies for abstract Entity interface and instantiable Entity
Master and Entity GhOst iNterfaces..........cooveveierinenenereeeeeeee e 18
Figure 4. Event-sequence diagram for sending a network packet.cccoceviveceieeneeceeseeennn. 20
Figure 5. Event-sequence diagram for receiving a network packet.cccvvveveevenccieeniennn, 21
Figure 6. Modifiable EXperiment Parameters............coveeeieiieierenese e 32
Figure 7. EXPErimMEnt IMELTICScoiiiiiieeieiee ettt e 34
Figure 8. DBP PaCKEL SIZESccieieiieieee ettt sttt sr e e e ene e 36
Figure 9. Comparison of Protocols Bytes Per SECONd...........coovvevieenieniiineene e 42
Figure 10. DBP Transform Protocol Running at Low and High Resolution...............cc.ccue.... 43
Figure 11. DBP and Foundation Transform Protocol Running at High Resolution................ 44
Figure 12. DBP and Foundation Transform Protocol Running at Low Resolution................. 45
Figure 13. CPU Utilization Transform High - With and Without Data Collection 47
Figure 14. Packet Loss Transform High — Ethernet (maximum value 4.2%)cccccceeueenee. 49
Figure 15. Packet Loss Transform Low - Ethernet (maximum vaue 2.9%0)..........cccccveeuennee. 50
Figure 16. Packet Loss Animation High - Ethernet (maximum value 2.2%)cc.cccoevuenee. 51
Figure 17. CPU Utilization High-ResolutionTransform Protocol - Ethernetccccceeeeee. 53
Figure 18. CPU Utilization LowResolutionTransform Protocol - Ethernet........................... 54
Figure 19. CPU Utilization High-Resolution Animation Protocol - Etherretcc........ 55
Figure 20. CPU Utilization High-Resolution Transform Protocol - Modem...........cccccoeveeeee. 56
(MAXIMUM VBIUE 7.5%0)....ccueeeee sttt sttt ettt s teeae e be e sreesneeaeeneesraennennne e 56
Figure 21. CPU Utilization Low-Resolution Transform Protocol - Modem...........c.ccceeuneee. 57
(MAXTMUIM VAIUE 7.6890).......ceueeeeiiierieste ettt b b e b e ene e 57
Figure 22. CPU Utilization High-Resolution Animation Protocol - Modem...........ccccceveee. 58
(MEXTMUM VBIUE 7.5%0).....ecitee ettt sttt st e e sb s ae b e e sare e beesnneesneesnneen 58
Figure F.1 DBP profile editor to modify tooltips for elements and attributes...................... 120
Figure F.2 DBP-EQIt INTEITACEcoiiieeieeese st 121

Xi

THISPAGE INTENTIONALLY LEFT BLANK

Xii

ACKNOWLEDGMENTS

To Don McGregor, | thank you for your guidance, wisdom, and enthusiasm
throughout this project. Your efforts have given me an invaluable learning experience.
To Don Brutzman, thank you for sharing your insight and perspective during this project.

Y ou have helped me to maintain the proper focus throughout this endeavor.

Xiii

THISPAGE INTENTIONALLY LEFT BLANK

Xiv

l. INTRODUCTION

A. BACKGROUND

This thesis investigates how the Extensible Markup Language (XML) can be used
to describe applicationspecific networking protocols for use in the NPSNET-V Virtua
Environment. Specifically, it describes design of the NPS Dynamic-Behavior-Protocol
(DBP) protocols, which are multicast / unicast capable and can be added at runtime to the
distribued operating environment. With XM L-described packet payloads for these
protocols, supporting configuration documents can concisely and clearly describe
different variations of these protocols and can also enable switching between them at

runtime.

Protocols described by XML-based DBP documents can improve network
performance for large-scale networked virtual environments, since they can be tailored to
best support the requirements for a particular environment. These improvements can be
made rapidly and adaptively at runtime. Furthermore, protocols described in XML
instead of an imperative programming language (such as Java or C++) can be modified
by an adept nonprogrammer or even software agents, instead of requiring tedious
debugging and recompilation by extensively trained computer programmers.

B. MOTIVATION

NPSNET-V is aresearch project to investigate dynamically extensible, large-scale
virtual environments, including protocols that can be introduced into the environment at
rurnrtime. A limitation of current systemsis that present-day networking protocols can’t
be altered without rewriting and recompiling source code, then stopping and restarting

the system. Such constraints on protocol development prevent proper composability,
1

testing, monitoring and thus generally detracts from the NPSNET-V goa of runtime

extensibility.

In contrast, a DBP implementation that can run, test, compare and improve
continuoudly is expected to enhance the extensibility of networked virtual worlds, as well
as adaptively optimize network performance. A DBP implementation can further enable
computer-driven runtime optimization, thus providing a structure to make network
optimization experiments easier to conduct.

C. OBJECTIVES

The goal of thisthesisisto create DBP protocols that support communication
between entities whose prototypes are runtime-created, for use in the NPSNET-V
Research Project. These network protocols will facilitate exchanging state information
between objects in the network and can be written in XML to facilitate flexibility, ease-
of- use to the end user, and rapid creation at runtime. These protocols will support
network optimization by being able to switch between different source documents that

describe network protocols with different resolutions, again adaptively at runtime.

In NPSNET-V, avariety of software components including network protocols can
be dynamically loaded. This thesis examines adding DBP protocols that can be loaded at
runtime in the same manner as the pre-existing networking protocols written in Java.
These DBP protocols will initially have the same semantics, or functionality, as the
existing protocols that are described in Java. By changing the syntax of the XML source
documents, we can affect changes in both the syntax ard the semantics of the protocol at

runtime.

All networking protocols are uploaded to a server, and a pointer to a protocol’s
location is posted to a LDAP server. When a participating machine first encounters an
unknown protocol, it downloads the corresponding Java byte code associated with that

protocol from the server pointed to by the LDAP server.

The network message-format descriptions for DBP entity communications are
initially written in XML and posted to a web server. This byte code contains a URL that
pointsto an XML description of the packet format. The Java byte code parses the XML
file to discover the names and positions of the fields in the packet. The Java protocol

code then uses this information to parse fields and retrieve data from the packet.

If changes need to be made to the format of a packet, then fields can be added,
removed or modified in the XML packet description and the new description posted to a
web server. Based on the new description, different collections of data can be passed in
the network packets. Since the packet layouts are written in XML, protocols can be
quickly distributed to participating hosts and written, posted and incorporated during
execution of asimulation. Writing XML documents, which describe packet contents
does not require a programmer, an approach that supports and enhances the dynamicism
and authorability of NPSNET-V. XML documents are similar to HTML in many
respects and can be created or modified with atext editor. Thusan XML document
describing a protocol can be quickly generated this way and incorporated into a

simulation at runtime.

These XM L-described protocols can be implemented in a manner that supports
extensibility since the payload characteristics of protocols can be easily changed at

runtime to adapt to specific requirements, such as varying network load. If a new
3

protocol definition is created, the XML document is parsed by an XML parsing utility,
and the new protocol description isincluded in the running process. This capability to
rapidly create and switch between protocols enables performing dynamic network

optimization, in ways that are tuned by the diverse needs of the application.

To demonstrate the effectiveness of these XM L-described protocols, example
protocols are each constructed with one XML document supporting a high-resolution
packet payload and another document describing a low-resolution packet format. In
support of this demonstration a single network optimization is implemented that takes
advantage of this dynamic protocol-switching capability. This networking optimization
includes maintaining information about the ongoing state of the network, and also has the
ability to adjust protocols on demand for global optimization. Furthermore, experimental
tests are conducted to determine networking points of failure to determine when the
protocol switching is best performed. The two metrics leading to possible failure
conditions that are examined here are CPU utilization and packet loss. Summarizing, the

thesis objectives are straightforward and summarized in Figure 1.

» |mplement XM L-Described Protocols
» Create High and Low Resolutions

» |mplement Network Monitoring

» Test Networking Points of Failure

Figure 1. Thesis Objectives

D. THESISORGANIZATION

The chapters of thisthesis are organized as follows. Chapter 11 provides the
background for this thesis, including an overview of subjects considered in this thesis and
related work necessary for understanding context of the project. Chapter 111 presents an
NPSNET-V overview and a discussion of networking in NPSNET-V. Chapter IV
introduces the strategy used to implement the DBP protocols, to implemert a network
monitor, and to perform the network testing. Chapter V provides the results and analysis
of data collection and testing, then discusses tradeoffs that must be made to optimize the
protocols. Chapter VI presents thesis conclusions and provides recommendations for

future work.

THISPAGE INTENTIONALLY LEFT BLANK

Il. BACKGROUND AND RELATED WORK

A. INTRODUCTION
Networked virtual environments comprise an active and contemporary research
topic that is continuing to develop and improve. Like most other topics in Computer

Science, efforts in this area build on the progress already made.

Design patterns have been published that provide solutions to common software-
design challenges. Standard procedures have also been devel oped to construct network
testing plans. New technologies have been developed, such as XML, which provide
opportunities to apply new solutions to old challenges. Concurrent and recent work in
the same area impacts design considerations, which must consider interoperability. This
chapter presents a variety of background material that directly influences this thesis.

B. DESIGN PATTERNS
Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem,

in such away that you can use this solution a million times over,

without ever doing it the same way twice. (Alexander, 77)

1. Design Patterns Motivation

Design patterns provide a common strategy for solving complex problems. By
naming these patterns, programmers gain a common vocabulary by which to discuss
them. Patterns focus on specific object-oriented design challenges. Individual patterns
indicate when they apply, what impact their use has on a project, and what the

consequences of their use are. Patterns identify classes (and / or interfaces), class

instances, roles, collaborations, and responsibilities (Gamma, 95).

Severd design patterns are used in NPSNET-V. The most important patternsin
this thesis include the singleton, observer, and model / view / controller patterns.

2. Singleton Pattern

The singleton pattern ensures that the class following the pattern has only one
instance, and that there is a global means of accessing that instance (Gamma, 95). The
singleton pattern is usualy used for a class controlling a centrally managed resource

(Grand, 98).

In a Java implementation, the singleton class has a static variable referring to the
single instance of the class. The class provides access to this instance with a static
method, which returns a reference to thisinstance. All of the class' s constructors are
private, to prevent instantiating another instance of the class (Grand, 98).

3. Observer Pattern

The observer pattern defines“... a one-to- many dependency between objects so
that when one object changes state, al its dependents are notified and updated
automatically” (Gamma, 95). This pattern uses subjects and observers, with a subject
able to have many observers. When the subject experiences a change in state, it notifies

its observers, who in turn query the subject for what the changes are (Gamma, 95).

In a Java implementation, the subject usually passes a self-reference as a
parameter to the observer. This process generaly uses an interface for the method call, to
enable run-time registration of observers. The subject also provides access to its state

attributes for the observer to act on the changes (Grand, 98).

4, Model / View / Controller (MVC) Pattern

The Modéd / View / Controller (MVC) pattern was originally a combination of
classes designed to build user interfaces in Smalltalk-80. The model object is the
application object that contains persistent state variables, the view object is the graphical
representation of the model, and the controller object defines the model’ s reaction to user
input. By loosely coupling these three components, users can have multiple views for an
object, and also change a view to better reflect the state of the model. Likewise, there can
be different means of user input. Following the MV C pattern enables each component to
make changes based on information from another component, without have to know the
inner workings of the other two components (Gamma, 95).

C. NETWORK MONITORING
1. Networ k Performance Evaluations

Network performance evaluations are used to determine how well a system is
performing, and whether any improvements are necessary. The following pointsin
Figure 2 are from the book “The Art of Computer Systems Performance Analysis’ (Jain,

91) and outline the steps in performing such a study.

. State the goals of the study and define the system boundaries
. List system services and possible outcomes

. Select performance metrics

. List system and workload parameters

. Select factors and their values

. Select evaluation techniques

. Select the workload

. Design the experiments

. Analyze and interpret the data

. Present the results. Start over, if necessary

Figure 2. Network Performance Evaluation Steps (Jain, 91)

2. Network Evaluation Techniques

The three evaluation techniques used by this thesis to evaluate networks are
analytical modeling, ssmulation and measurement. Analytical evaluation is best used
when time is short and resources are low. Analytical evaluation is usualy performed
mathematically and does not include any data collection. Simulation evaluation involves
building a model of the network being tested and collecting data. Measurement
evaluation is performed when gathering actual data from the network being tested. Since
testing is susceptible to errors, any network evaluation of one type needs to be verified by

performing an evaluation of another type (Jain, 91).

This thesis uses measurement evaluation through network testing. The metrics
collected focus on the impact that packet sending rates have on CPU utilization and
packet loss. Performance thresholds are then determined during this testing. This test
implementation involves reporting the network state to the Area of Interest Manager
(AOIM). The thresholds are then validated during a simulation of a virtual environment
running on top of NPSNET-V.

D. EXTENSIBLE MARKUP LANGUAGE (XML)

Extensible Markup Language (XML) is a meta- language used to define
structured-data documents for other languages. XML looks similar to HTML, but is very
different and much more powerful. Unlike Hypertext Markup Language (HTML), XML
allows users to define their own tags. These tags may also describe content semantics
and are not simply limited to formatting asin HTML (Harold, 99). XML provides a
universal meta- markup language that can be used to describe data, including

configuration data used in a program. An XML document can be parsed at runtime and

10

the contents loaded into the running process. The data contained within the document
can be as routine as stored configuration parameters, or more complex such as
descriptions of components to be created and included in the current process, or even
scripting code written using independent computer languages.
E. TEAPOT WORLD

Teapot World was created as a simple application in which to test the foundation
protocols of NPSNET-V. The foundation protocols are five lightweight protocols that
contain entity state information of varying complexities such as position, angular
acceleration, and animation sequence start times. The foundation protocols are included
in NPSNET-V and a developer can use them when creating their entities, instead of
having to create unique protocols. Teapot World aso allows testing of the DBP

protocols, which have the same functionality as the foundation protocols.

The Teapot World application runs on the NPSNET-V architecture enabling
manipulation of teapotsin a Java 3D (Sun, 01) window. The model is an object, which
inherits from the NPSNET-V entity class and has arobust set of attributes organized into
lightweight Protocol Data Units (PDUSs) for use in a 3-dimensional (3D) worldspace. The
teapot view is imported from the Virtual Reality Modeling Language (VRML) into Java

3D. The controller is user input from both the keyboard and mouse.

Teapot World provides a baseline virtual environment that is suitable for testing
protocols. Teapot World testing is performed both with two or more applications on the
same machine and with applications running between two or more machines. By
mani pulating the teapot in the process in which it was created (also known as the master

entity) with the keyboard and mouse, the copy viewed in another process (also known as

11

the ghost view) can be examined visually for proper behavior. The ghost copy can be
compared directly with the master entity to check for the same alignment and rotation

speeds as well as checking whether the animations run smoothly on the ghost side.

Because Teapot World is a simple environment, consisting only of one teapot, it
is perfect for testing protocols since other variables that are present in a more complicated
environment can be eliminated. An even simpler version of Teapot World used for
network testing has no view component to the model, so that no processor time is needed
for rendering graphics. This minimalist version enables further isolating the networking
aspects of NPSNET-V using the Empty Entity, and allows sending packets at a rate
which tests the limits of network capacity.

F. RELATED WORK - AREA OF INTEREST MANAGEMENT (AOIM)

The NPSNET-V AOIM scheme is the thesis topic of Navy Lieutenant Michael S.
Wathen (Wathen, 01). NPSNET-V uses Area of Interest Management (AOIM) to
structure network traffic. A mgor goa of the AOIM manager is to limit network traffic
to only entities of interest to the application. Entities that are grouped together on the
same geographic area, and receive each other’ s messages are considered to be in the same
zone. These zones are based on geographic proximity and the number of entities that can
share information based on system and network load. As the population in an
environment increases, the number of zones increases and vice versa. A procedure
whereby the zones split into smaller zones and the components are redistributed into
these new zones is known as subdivision. The NPSNET-V AOIM procedures are

dynamic, and the AOIM zones can be modified at runtime.

12

Dividing and combining AOIM zones is costly due to computation cost and
communications delays, and so may not always be an ideal solution to optimize the
number of participantsin aregion. Without information other than the number of entities
in a zone, the AOIM manager is only able to make zone modification decisions based on
simple high and low thresholds for the number of participants in a networked virtual

environment. Further feedback is needed for effective large-scale optimization.

A network- monitoring implementation can provide network-state information to
the AOIM manager. If ahigh number of entities are in the same zone, but are not
generating many networking packets, the AOIM manager is now informed of this fact
and may decide to not subdivide the zone. Conversely, on the other end of the spectrum,
if asmaller number of entities are in a zone but the network is being overwhelmed, the
AOIM manager can subdivide the zone to reduce the network load. The AOIM manager
can look at the load on each channel as well, to make smarter decisions of how to
distribute the entities into zones in avirtual environment. This process happens
dynamically at runtime. AOIM is a continuous task since users are anticipated to
constantly join and exit the environment, and also expected to cross zone boundaries

frequently.

With a DBP network implementation, the AOIM manager has a further option in
optimizing the distribution of entitiesin zones. DBP packets can have their packet
resolutions changed rapidly, and at runtime. The network monitoring implementation
informs the AOIM manager of the payload resolution of network packets, currently
implemented as high or low. The AOIM manager may then choose to reduce or increase
resolution of state information in these packets. A reduction in resolution reduces the

13

size of the PDUs, reducing the bandwidth used by the application and thereby providing a
network protocol solution.

G. VIRTUAL REALITY TRANSFER PROTOCOL (VRTP)

Virtual Reality Transfer Protocol (VRTP) is a networking protocol research
project intended to extend http and provide support for Large Scale Virtual Environments
(LSVEs). LSVEsare primarily constructed as either peer-to-peer or server-based. VRTP
provides a solution that enables both type of architectural designs, or even a hybrid
approach, to be implemented. VRTP can serve as the sole protocol needed to support a
LSVE. VRTP will combine many existing dissimilar protocols to provide this solution
(Brutzman, 97). Network monitoring, such as the techniques presented in this thesis, is
expected to be as important as client-server and peer-to-peer support.

1. Breakthroughsand Bottlenecks

Virtual environments continuously push the limit for computational complexity
and networking availability. As technology continues to improve in these areas and
remove bottlenecks, virtual environment design makes a leap forward until it hits the next
bottleneck. VRTP implementations are expected to provide the breakthroughs needed to
overcome the networking protocol bottleneck (Brutzman, 77).

2. Real-time Transport Protocol

Real-time Transport Protocol (RTP) supports applications where speed is of high
importance. RTP adds quality of service and synchronization to existing transport
protocols. RTPisidea to support UDP-based applications such as streaming audio and
video. Since speed is of vital importance in LSVEs, RTP will further contribute to the

networking protocol effortsin an LSVE (Afonso, 99).

14

3. NPSNET-V

NPS has advocated and supported persistent online virtual worlds for years. A
large-scale, persistent virtual world must have runtime-extensibility, scalability, and
composability. One of the main challenges to achieving these goals is networking issues.
NPSNET-V and DBP wil continue to develop as VRTP components. Together these
provide a new protocol at the application layer to accomplish a variety of interdependent
objectives and overcome diverse networking bottlenecks (Brutzman, 97).

H. SUMMARY
This chapter provides an overview of design patterns, basic network testing

procedures, XML, and related work on the NPSNET-V project.

Using existing design patterns not only ensures that a good software-design
approach is followed, but also provides a common terminology with which to discuss
design and implementation issues. The network-testing considerations presented in this
chapter provides a checklist with which to evaluate a thorough network-testing design.
XML isanew and exciting technology that makes it possible to implement new solutions
to many challenges, such as runtime- modifiable protocol specifications. Teapot World is
a simple environment in which to measure metrics and test networking thresholds, while
limiting interference from many of the other dynamic variables in a complex virtual
environment. Concurrent and related work, especially in AOIM, significantly impacts on
network optimization, since AOIM controls the channel allocations and is concurrently
attempting runtime optimization. VRTP is aframework for integrating the variety of
client, server, peer-to-peer and network monitoring protocols needed to provide essential

network serveices for LSVES.

15

THISPAGE INTENTIONALLY LEFT BLANK

16

[1l. NPSNET-V

A. INTRODUCTION

This chapter provides an overview of the elements of NPSNET-V that affect both
component protocols and network optimization. The key components affecting the
relationships between entities and protocols are presented, along with flow of control of
the network monitoring and optimization algorithm. Protocols included with NPSNET-V
are specifically discussed. The goal to optimize NPSNET-V networking may differ
somewhat from general network optimization, so this chapter provides additional
background that illustrates how design strategies were derived and implemented.

B. MODEL /VIEW / CONTROLLER

The Mode / View / Controller (MVC) pattern is commonly used in object-
oriented programming for virtual environments. The Model object describes how an
object interacts with its environment, containing the state variables and physics model of
the object. The model contains critical attributes and computational procedures such as
entity’ s position, velocity, and collisionavoidance algorithms. Most networking

protocols in NPSNET-V directly implement the model component.

The View object provides the one or more visua depictions of an entity. One
useful reason for having multiple-view objects is to enable multiple resolutions of an
entity, or even multiple graphics formats. NPSNET-V currently supports both Java 3D

and VRML/X3D component views.

The Controller object enables a consistent way to change values in the model
object. The Controller object can accept input to change the model from many sources

including user input, network traffic and multi-agent input.

17

C. ENTITIES
1 Entity Masters

Entity masters inherit from the entity class and describe the authoritative instance
of an entity. Typically there exists only one entity master on a machine controlled by a
user. In addition, there may be one or more entity masters, known as agent masters,
controlled by an autonomous agent. All other instances of the same entity are a ghost
copy of that entity. Entity masters include the singleton model class and typically also
link a controller and a view.

2. Entity Ghosts

Every other instance of an entity that is not the master is an entity ghost. Often
each host in a distributed exercise will contain one or more masters, which interact with
ghost copies of other entities from other machines and any agent masters located on that
machine. The ghost copies are local copies of remote masters and thus their state
information may not necessarily be correct. Messages from the entity masters are sent to
ghosts, who interpret the messages to update and extrapolate state values in the local

copies of the entity’s ghosts.

m
>
=,
—
<

Entity Master Entity Ghost

Figure 3. Inheritance hierarchies for abstract Entity interface and instantiable Entity
Master and Entity Ghost interfaces

18

3. LDAP Server

All NPSNET-V entity class definitions exist on aweb server. If auser wishesto
create a new class of entity, they must either host aweb server or arrange to have the

class definitions placed on an accessible web server.

When avirtual world attempts to load a new entity, it doesn’t necessarily have the
class definition or know which web server it is stored on. When an unknown entity is
encountered for the first time, a well-known Lightweight Directory Access Protocol
(LDAP) server is queried, which provides a URL to the server that stores the entity class
information. An LDAP server isalightweight server that is ssmilar in function to a
DNS server. An LDAP server maintains a table of addresses of where to find
information. In NPSNET-V, the LDAP servers maintain addresses of where to find
copies of code (McGregor, 01). Replicated LDAP servers can cache replicated copies of

such code and content, which thereby increases reliability, accessibility and scalability.

In the long term, VRTP-capable hosts participating in LSV Es are expected to
provide individual serving capabilities.

4, Networking Overview

Entities in the NPSNET-V virtual environment need a means of communicating
with each other. They accomplish this many-to- many message passing through
application-specific protocols. Each entity has one or more protocols that report updates
to the state information of that entity. The master instance of the entity understands how
to generate Protocol Data Units (PDUSs) describing changes in entity state. The ghost
instances of this entity receive such messages and understands how to decode the PDU to

make the appropriate, corresponding changes to the ghost.

19

The network flow begins when the controller object is notified of a change to the
entity’ sinternal state. The protocol generates a PDU with the appropriate data and passes
this PDU to the Area of Interest Manager (AOIM). The AOIM decides where to send the
PDU. The Entity Dispatcher is a singleton packet handler that directs all traffic flow of
PDUs coming into and leaving the NPSNET-V application. The PDU message is then
passed to the appropriate Channel object where it is written to the appropriate multicast

(or unicast) network address/port combination corresponding to that AOI area of interest.

Class Entity Protocol AOIM Entity Channel
Instances: Master Dispatcher -_—
T
I i entityChanged i
E : getValues i

getDistributionSet

set

(]

sendPacket

: : Dsendpacket |:|

ToAOI network

. address/port
v |:| '

Figure 4. Event-sequence diagram for sending a network packet.

20

Class Channel Entity Entity Protocol
Instances: Dispatchen Ghost
| i getPackets —
N E—
y] i
E I:I packetVector —
————»
___findEntity

receiveData _cietProtocoINumbered
:I receivePacket

EchangeStaIeVariabIa;

Figure 5. Event-sequence diagram for receiving a network packet.

The packet is received on channels of remote machines that are listening to traffic
from that entity. The Entity Dispatcher inspects the payload header to determine the
ghost entity that the message is intended for, and then forwards it to the entity. The ghost
entity then decodes the message using the appropriate protocol, and applies the changes
plus extrapolations to the ghost entity’s state.

D. DYNAMIC BEHAVIOR PROTOCOL (DBP)

Java applications routinely use object serialization for networking

communications. Unfortunately, this Java-specific approach requires the network
21

packets to be in very specific (and perhaps non-portable) binary formats. Using object
serialization, the objects being passed and restored must utilize identical serialization in
all respects. Sometimes conflicts can arise from simple, subtle differences such as
serializing two identical objects using different compilers or different versions.
Additionally, using serialized packet formats detracts from the interoperability of

NPSNET-V, since these cannot be made to match existing norntJava packet formats.

Dynamic Behavior Protocol (DBP) uses Extensible Markup Language (XML) to
describe packet formats and fields. Using DBP, we can create packets with specific
layouts without relying on Java-specific object serialization. DBP protocols use a binary
format on the network and can be created and modified at runtime. Once an XML
protocol created this way has been distributed and parsed, aloca entity knows how to
read and write the PDU-packet format.

E. ENTITY DISPATCHER

The entity dispatcher isasingleton in NPSNET-V and is the central hub for
message routing on each host machine. The entity dispatcher maintains alist of al
entities in the system and controls the channel manager, which in turn controls each of
the network channels used to send and receive network traffic. Asshownin figure 5,
incoming messages are passed from the channels to the entity dispatcher. The entity
dispatcher determines which entity is addressed by the message and then forwards it.
Outgoing messages follow the same flow in reverse.

F. PROTOCOLS
1. Protocolsin NPSNET-V

Entities register their protocols with the entity dispatcher. Each protocol is

assigned a unique Globally Unique Identifier (GUID) for improved performance. When
22

a message encoded using an unknown protocol is received, the entity dynamically loads
the protocol component associated with that GUID, and packet payloads corresponding to
that protocol are thereafter understood by the owning entity.

2. NPSNET-V Foundation Protocols

Five foundation protocols are provided by the NPSNET-V architecture. They are
the transform, inertial, animation, articulation and acceleration protocols (McGregor, 01).
Each of the five protocols inherits from the protocol base class. The transform protocol
provides spatial position, orientation and scale operations. The inertial protocol conveys
linear and angular velocity. The animation protocol allows simple animations, the
articulation protocol passes data for articulation of additional joints, and the acceleration

protocol adds data for linear and angular acceleration.

The five foundation protocols provide a robust, lightweight network-
communicaitons package to communicate entity state changes. Since the protocols are
included in NPSNET-V, any application running on top of NPSNET-V can use these
protocols for its entities. In the event that these protocols do not meet the requirements
for an application, additional specialized protocols can be loaded dynamically.

3. DBP Protocols

The DBP protocols are a separate protocol package included with NPSNET-V.
The DBP protocols include examples that are identical to the foundation protocols in

functionality, each having the same names and field descriptions.

DBP protocols are defined by one or more XML documents that describe the
layout of the protocols. Even though the field descriptions are the same as for the

foundation protocols, the data types may be different in order to experiment with

23

performance optimization. As an example, afoundation protocol field defined as having
type double may be described in the corresponding DBP protocol as afloat. Once a
protocol-defining XML document has been parsed, the protocol is ready to send and
receive packets without having to parse the definition document again later. Different
versions of a protocol can be described by different XML documents, and thus a protocol
can be redefined, communicated, reparsed and thus updated at runtime.

G. NETWORK CHANNELS
1. Channels

NPSNET-V establishes AOIM-organized channels, each of which encapsulates a
socket for network communications. The AOIM determines which channel a protocol
packet is sent on. Typically, al entities within the same AOIM zone have their protocols
send updates on the same channel, corresponding to a particular geographic area.
Limiting network traffic within a zone to a multicast channel enables individual host
machines to disregard packets that are not of interest to active entities on the local
machine. This culling of unwanted network packets via multicast- hardware capabilities
improves performance and enables effective scalability to much higher aggregate traffic
levels.

2. Channel Manager

The channel manager is a singleton created by the entity dispatcher. The channel
manager keeps track of channels that have been created.

H. SUMMARY

This chapter provided an overview of the elements of NPSNET-V that affect
protocol design and network optimization. NPSNET-V follows the Model / View /

Controller (MVC) paradigm, which enhances the extensibility of the design architecture.

24

The entities in a virtual environment each have two main components. the master entity
resides on the owning machine and maintains the authoritative state information, while
the ghost copies reside on every other machine that has knowledge of the entity. The
DBP protocols use XML documents that are parsed to define the data types and initial
values. Thisflexibility can be exploited to enable different resolutions for each protocol
and dynamic run-time updates. The AOIM scheme uses channels to divide the
networking traffic among different multicast (or unicast) address/port combinations for

hardware culling of unwanted network packets and scalable traffic handling.

25

THISPAGE INTENTIONALLY LEFT BLANK

26

V. DESIGN OF EXPERIMENTS

A. INTRODUCTION

This chapter discusses the experimental approaches used to demonstrate and
evaluate the main goals of thisthesis. There are three separate efforts. The first effort is
creating XML-based protocols. The second is constructing a network monitor. The third
effort is determining the networking points of failure that can occur while running a
virtual environment, and thus establish default thresholds for protocol switching.

B. DBP PROTOCOLS

The basic protocols aready included with NPSNET-V are the five foundation
protocols. These implemented protocols make an excellent starting point for
implementation via the DBP protocols, thereby enabling experimental comparisons. Five
DBP protocols were created based on the foundation protocols: transform, inertial,
acceleration, animation, and articulation. Since these DBP protocols mirror the
foundation protocols in functionality, they can be compared directly to verify functional

correctness and also to test for any inherent advantages provided by DBP flexibility.

The entities that the DBP protocols are to interface with in NPSNET-V are
written in Java. They have coded expectations for parameters that can be received and
sent. For thisreason, the DBP protocols each require that the supporting XML
documents define these same parameters. Although this may limit the ability of the XML
documents to describe parameter definitions for use in the protocols, the data types for

these definitions can be changed to meet changing requirements.

To take advantage of the dynamic abilities of the DBP protocols, and to ssimply

achieve useful implementations, each protocol is described with both a high-resolution

27

and a low-resolution XML document definition. To accomplish this, each value normally
defined as a 64-bit double in the normal high-resolution version has a counterpart defined
asa32-hit float in the low-resolution version. Additionally, each 64-bit long data type in

the high-resolution protocols has a corresponding 32-bit integer datatype definition in the
low-resolution protocols. When a packet is sent, the appropriate data types are written to

a byte stream based upon which protocol resolution the protocol has been directed to use.

On the receiving end of a packet, the protocol tests each mutable value that arrives to see

which data type is being used. Thisimplementation allows great flexibility when

specifying varying protocol resolutions.

To quantitatively test the correct behavior of the DBP protocols, a network
monitor and a visual display were created. The network monitor counts the number of
bytes sent and received, and the display creates a graph that shows thisinformation. Two
identical entities are created that use the same DBP protocols. The entities both send
packets at the same rate, implemented with a heartbeat timer. They are compared at the
same time, one with protocol set to high and the other to low resolution. Next, the same
test is performed comparing the DBP protocols to their corresponding Foundation
protocols.

C. NETWORK MONITOR

A network monitor was created to gather statistical data about network
performance for use in optimization. The networking metrics selected for measurement
are packets sent and received, and bytes sent and received. These two metrics alow
measuring the data rate in packets- per-second, as well as the bandwidth used by an

application. Data rate and bandwidth are two measurable indicators that can be used to

28

predict network load. Knowing this information can be used for determining whether to

switch protocol resolutions at runtime and take advantage of the DBP protocol flexibility.

Whenever packets are sent or received through the entity dispatcher, the network
monitor is notified of the number of bytes and number of packets sent or received.
Following the observer pattern, an application interested in the network data instantiates a

network monitor and queriesit at the desired interval.

The data collection point selected is at the Entity Dispatcher. The Entity
Dispatcher is a singleton, which ensures no double reporting of data, and all network
traffic flows through it, which ensures that all packets are counted. The Network Monitor
was initially designed as a singleton, but was later changed to a private data member of
the singleton Entity Dispatcher. A redundant data collection system has been
implemented with data collection for every channel, but thisis currently disabled and not
needed. Data collection in the Entity Dispatcher can be turned on or off at the discretion

of the programmer.

The Network Monitor collects data for every packet sent or received. Summary
datais returned to those subscribed listeners that request it. The returned network-

monitoring information contains eight values:
average number of packets received
average number of bytes received
average number of packets sent
average number of bytes sent

number of packets received since the last report
29

number of bytes received since the last report
number of packets sent since the last report
number of bytes sent since the last report

The Network Monitor has an adjustable time duration for data-collection buffers.
The averages computed are averaged over thistime interval. Datais dropped from the
buffer list when older than the specified duration. The resulting averaging processis

similar to the diding-window procedure used in TCP connections (Peterson, 00).

The Network Monitor reports the status of the network as quiet, busy, or
thrashing when queried. The thresholds for when the network is considered busy or quiet
can be set through function calls, and are initialized to default values based on the
network-testing portion of thisthesis. If the measured network state repeatedly crosses
back and forth across the high and low thresholds, then the network state can be
considered thrashing. Thresholds for the number of times the state attempts to switch and
the time interval across which these attempts occur can both be set through the interface
to the network monitor.

D. EVALUATION STUDY
Following the steps presented in Chapter 11, the experiment follows the steps

presented in “ The Art of Computer Systems Performance Analysis’ (Jain, 91):

1. The goals of the experiments are:

Determine the correlation between packets-per-second and CPU

utilization

Determine bandwidth utilization

30

Determine packets per-second at which CPU usageis at 10%

Find ways in which packets can be modified in order to optimize network

performance

Since a machine typically receives many more packets than it sends, the point of

measurement is at the receiving machine.

2. For testing, only one machine is the sender, and the other the receiver. The
sender produces packets of afixed size at a steady rate. The receiver consumes and
measures the sent packets. The two machines are disconnected from any other networks
to eliminate any interference or noise. Both sender and receiver use the Empty Protocol,

which passes a fixed-size byte-payload.

3. The metrics selected are discussed in paragraph F below and include

bandwidth, packets-per-second, and CPU utilization.

4. The system parameters are discussed in paragraph G below. Network
benchmark testing is performed between two machines connected by either a 100 Mbps
Ethernet connection or a 56K modem connection. This testing is performed using likely

packet sizes at varying packet rates in 10-second transmission windows.

5. The key parameters for the experiment are listed in Figure 6 and defined as

follows:

The available bandwidth is set at two different levels (Ethernet

100 Mbps and 56K modem).

31

The packet sizeis set at three different levels, representing the
transform high, transform low and animation high packet

definitions.

The packets-per-second sending rate is varied at regular intervals.

» Available Networ k Bandwidth
» Packet Size
» Packets Per Second

Figure 6. Modifiable Experiment Parameters

6. The evaluation techniques are discussed in paragraph E below and include

both simulation and measurement-based network-eval uation techniques.

7. Theworkload consists of an empty entity that transmits byte arrays of the three

protocol packet sizes at an adjustable rate.

8. For the experimental design, packets are sent at steady rates, over arange of

flow rates. Three iterations are performed for measurements at each transmission rate.

9. For the data analysis, the data is examined to determine if conclusions can be

drawn from the samples taken.

10. For the display presentation, the results are plotted to determine the optimal
and maximum desired packet rates, and then metrics are compared against each other to

determine if any correlation exists among the results.

32

E. EVALUATION TECHNIQUES
1. Simulation

The simulation conducted is performed with an empty entity that transmits
packets of three tested sizes. The first size, 138 bytes, represents a high-resolution
transform protocol packet. The second size, 74 bytes, represents a low-resolution
transform packet. Thethird size, 19 bytes, represents a high-resolution animation
protocol packet. This simulation determines how well the receiving machine and
transmission media might handle different packet flow rates for these different packet
sizes. The percent packet loss and percent CPU utilization are measured at the receiving
machine.

2. M easur ement

The measurement is performed after the results have been analyzed and
benchmarks are established. The benchmarks are established based on observations
regarding how well the networking optimization performs during an actual simulation.

F. METRICS
1. General

In conducting experiments to determine the appropriate settings for the DBP
protocols, three metrics (listed in Figure 8) are used: bandwidth used, packets per
second, and CPU usage. The experiments seek to quantify the relationship between these
three metrics and the proper settings for the DBP packets to achieve application based

optimization.

33

* Bandwidth Used
» Packets Per Second
» CPU Utilization

Figure 7. Experiment Metrics

2. Bandwidth

The definition of bandwidth used in this thesis is the aggregate bits-per-second
provided to the application. The term available bandwidth refers to the bandwidth
provided by the physical media used to connect the network. Changing the type of
connection between two machines can change the maximum bandwidth available. The
two tested connections are an Ethernet 100 Mbps connection and a 56K bps modem
connection. These two connections represent the target 100 Mbps high end and 56k bps
low end of anticipated client connections in web-based distributed virtual environments.

3. Packets per Second

The packets per second metric simply measures the number of packets sent over a
one-second interval. Packets are measured at that rate for a four-minute time period and
the average packets-per-second value calculated. The four- minute measurement window
is selected for two reasons. First, a sufficiently long duration is needed to simulate
realistic application conditions. Second, a surge in CPU utilization occurs approximately
every 3 1/2 minutes, which is correllatable and attributed to Java garbage collection of
transient data structures. Since data collection must occur under realistic conditions, the
measurement time interval must not eliminate or avoid this occurrence. The four-minute

data- capture window ensures consistent inclusion of a single garbage-collection event.

The high-resolution transform protocol payload is 16 doubles, which equates to
128 bytes. The high-resolution inertial protocol has a payload of 13 doubles and 2
longs, for a payload size of 120 bytes. The high-resolution animation protocol has a
payload of 1 long and 1 byte for a payload size of 9 bytes. The high-resolution
acceleration protocol has a payload of 6 doubles for a payload size of 48 bytes. The high-
resolution articulation protocol has a payload of 4 doubles for a payload size of 32 bytes.
Each protocol has an internal overhead of 10 bytes and NPSNET-V prepends a header of

24 bytes.

The low-resolution transform protocol payload is 16 floats, which equates to 64
bytes. The low-resolution inertia protocol has a payload of 13 floats and 2 integers, for
apayload size of 60 bytes. The low-resolution animation protocol has a payload of 1
integer and 1 byte for a payload size of 5 bytes. The low-resolution acceleration protocol
has a payload of 6 floats for a payload size of 24 bytes. The low-resolution articulation
protocol has a payload of 4 doubles for a payload size of 16 bytes. Each protocol has an

internal overhead of 10 bytes and NPSNET-V prepends a header of 24 bytes.

External to NPSNET-V, each packet has a 20 bytes header for IP, and a 8 byte
header for UDP. Systems connected using Ethernet have an Ethernet header of 18 bytes
prepended. Systems connected by modem using Point-to-Point Protocol (PPP), have a
PPP header of six bytes, and the IP and UDP headers are reduced to atotal of 3 bytes
(Stevens, 94). The total overhead external to NPSNET-V using an Ethernet connection is

46 bytes, and using PPP on a modem is 9 bytes.

35

Protocol Payload Total Packet Total Size | Total Size
Size NPSNET-V| Ethernet Modem
Transform High 128 162 208 173
Transform Low 64 98 144 109
Inertial High 120 154 200 165
Inertial Low 60 94 140 105
Animation High 9 43 89 54
Animation Low 5 39 85 50
Acceleration High 48 82 128 93
Acceleration Low 24 58 104 69
Articulation High 32 66 112 77
Articulation Low 16 50 96 61

Figure 8. DBP Packet Sizes

The most common type of packet in a networked virtual environment is a packet
updating a participant’ s position, analogous to the DIS protocol ESPDU (Singhal, 99).
The DBP protocol that provides analogous functionality is the transform protocol. The
transform protocol is 98 bytes in size at low-resolution and 162 bytes at high-resolution.
The transform protocol is aso the largest-sized DBP packet type, so if conditions are
tested using the transform protocol, packets from the other protocols will fit within the
bandwidth footprint tested.

4, CPU Usage

A host CPU consumes processing power for each packet that it sends and
receives. It isimportant to measure how much work the CPU must do to process network
packets. Of further interest is seeing whether correlations exist between CPU usage and

packets-per-second.

The amount of CPU processing used to process packets from the network needs

be balanced with other requirements. Keeping the network’ s resource demand low
36

provides greater host resources for interaction calculations, graphics rendering, and other
tasks. A design decision was made by the NPSNET-V Research Group to keep this
processing to between 10% and 15% maximum CPU capacity. The target maximum
packet-per-second transmission rate will thus correspond to the CPU usage at 10%.

G. TESTING

1. Deter mining Benchmarks

For the DBP protocol’ s ability to switch resolutions to be useful, such switching
must occur automatically and at the appropriate times. One of the goals of testing the
impact of packet rates on the receiving machine is to determine the optimal and
maximum packet flow rates. Once benchmarks are established, the program can better
collect data during execution and then make network-optimization decisions by
comparing the collected data to these benchmarks.

2. Protocols
a. Empty Protocol

For testing, a new Foundation protocol was created, the empty protocol,
which merely transmits an empty packet with a predetermined byte size. The entity
master is on the sending machine and the ghost is on the receiving machine. The empty
protocol is used to gather information about packets dropped and CPU usage at the
receiving machine. Thistesting is done at a variety of packet rates, including sending as
fast as possible from the sending machine. The sending rates are set based on spreading
the rates out to achieve an even distribution between zero and the maximum sending rate.
The rates are adjusted by adding intermittent delays to sSlow down the sending rate. This
is done rather than sending a specified number of packets per second which would cause

surging behavior instead of the desired even flow rate.

37

b. DBP Protocol

The DBP protocols have high and low resolution settings. Parsing an
XML document and reading in the appropriate data types for each parameter of the
protocol sets the resolutions. The high-resolution format uses data types that are
synonymous with the foundation protocols. The low-resolution version of this protocol

degrades 64-bit doubles to 32-bit floats, and 64-bit long integers to 32-bit integers.

To compare the effects of these savings in packet size, the number of bytes
transmitted over a minute at the high resolution is compared to the corresponding number
of bytes at low resolution. Additionally, these measurements are compared to
measurements of the foundation protocols of the same type. To achieve synchronization
and consistency, the protocols transmit periodic “heartbeat” packets, and data is averaged
over a minute.

3. Test Environment

The platforms used for testing are two Pentium 111 1-Ghz computers with 256 MB
RAM. These systems use Windows 2000 with Service Pack 2 as their operating system.
The programming language used is Java s JDK 1.3.1 (Java, 01). The sending platform
runs an Apache web server (Apache, 01) and an LDAP server (Eudora, 01). The

receiving machine runs the network monitor application to measure CPU usage.

When tests are run between the systems, the fast connection is a 100 Mbps
Ethernet connection using multicast. The slower connection is between two external 56k
modems running PPP connections and using UDP unicast packets. In each case, the
machines are isolated on their own standalone network, with minimal applications

running in the background.

38

H. PACKET RESOLUTIONS
1. DBP

The dynamic behavior protocols can have their resolution adjusted at runtime.
Merely changing the XML documents that describe the protocol packets can create
varying resolutions. Only the payload (and not the header) of the packet is reduced.

2. Other Protocols

To change the resolution of any protocol other than the DBP protocols, a
programmer must create a new protocol, which enables the resolution changes in the
protocol. This flexibility is only possible following extensive manual programming,
compilation, testing and debugging by experienced programmers.

l. SUMMARY

This chapter discusses the design of experiments used to conduct all three major
portions of thisthesis. The DBP protocols are written in Java, and each have supporting
XML files that describe the data type definitions. The network monitor reports the
current state of the network to indicate when to switch resolutions with a DBP protocol.
The network testing is designed to establish the optimization points in the NPSNET-V
networking architecture, and identifies where to set the network monitor state thresholds.

Extensive parameter analysis and metric values are discussed.

39

THISPAGE INTENTIONALLY LEFT BLANK

40

V. EXPERIMENTAL RESULTSAND ANALYSIS

A. INTRODUCTION

This chapter presents the results of the experiments corresponding to the three
main objectives of thisthesis. DBP Protocol implementation, the network monitor, and
the analysis of protocol changes for network optimization. The majority of this chapter is
devoted to conducting isolated network testing to quantify the critical break pointsin
CPU utilization and percent packet loss. Packets-per-second and CPU utilization graphs
are presented with plotted means and standard deviations.

B. DBP PROTOCOLS
1 Protocol Switching

Two identica entities are compared to each other, one using high and the other
low-resolution DBP protocols. These two entities both used the transform protocol. The
only means of sending packets is through a heartbeat thread, which sent a packet of each
type, by each entity, once per second. The NPSNET-V system network-status utility was
used to compare the two entities to give a graphic representation of the byte savings when
switching resolutions. The low-resolution only transmitted approximately 60% of the

bytes that the high-resolution protocol did.

Comparing the DBP transform protocol directly to the hard coded foundation
version transform protocol, shows much greater savings in bytes sent. The high-
resolution DBP transform protocol sends approximately 25% of the number of bytes as
its foundation counterpart. The low-resolution DBP transform protocol sends only 15%

of the bytes compared to the foundation protocol.

41

Reducing packet sizes for Ethernet connections does not yield a significant
advantage. Reducing the number of packets sent, however, does result in a performance
gain. This performance gain primarily comes from reduced processing requirementsin
the variety of threaded Channel, Entity Dispatcher, Entity Master / Ghost, and Protocol
classes that handle the packet distribution. Further performance gains can be expected
for LSVEs distributed across Wide-Area Networks (WANS) due to reduced packet-
routing overhead in routers. WAN optimization for widely distributed LSVEs will be an

important area for future work.

When high numbers of packets are being sent using either different protocols or
from different entities, we can gain efficiency by combining some of the data into
packets. Since the data sent in a virtual environment is timely, using such a strategy must
have an either / or condition for sending data, where either enough data exists to fill a
packet, or a short timer has expired. If packet aggregation were incorporated into
NPSNET-V, the savings result is 4 to 6 ¥z times fewer packets sent whenever an entity is

actively sending packets.

4000
3500
3000
2500
20001
1500
1000

500 ¢

@ Bytes / Second

DBP Low DBP High Foundation

Figure 9. Comparison of Protocols Bytes Per Second

42

PSNET-¥ Metwork bytesDisplay Display =10 %] @ =10l x|

1900

1800
1700
1800
1500
1400
1300
1200
1100
1000
00
00
7on
600
a00
400
300
200
a0 —

Bytes Legend
I O T e e ey I Y B e e R T B e |
TimeStep {2 second(s))

& =100 =] =
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
800
800
700
800
500
400
300
200

100 _[\
Bytes Legend
|

[
TimeStep {2 second(s))

Latest Sent
I I
Tatal Sent
Latest Received
I I
Total Received

Latest Sent
] M
Total Sent

Latast Recelved
N At
Total Recelved

Figure 10. DBP Transform Protocol Running at Low and High Resolution

43

& =101x]) [-10f x|
9500
e(u o]
8500
aoo0o
74800
Fooa
B&00
B000
5500
5000
4500
4000
3a00
3000
2600
2000
1600
fooo

5000 _
Bytes RMM&MLBQBM

I e N e e N e e e e e
TimeStep (2 second(s))

% ET- I] o5 Foundation
9a00

4000
2600
2000
7400
7000
BE00
6O0D
5600
5000
4500
4000
2600
3000
2600
2000
1600
000

s00
Bytes MLMLEMM

e e e o e e e e e e
TimeStep (2 secondis))

Latest Sent
N A%
Total Sent
Latest Recelved
N A%
Total Recelved

Latest Sent
N M
Total Sent
Latest Received
B M
Total Received

Figure 11. DBP and Foundation Transform Protocol Running at High Resolution

44

& o] [#
‘QSDU
q000
8500
8000
7500
7000
E500
EOOO
5500
5000
4500
4000
3800
3000
2500
2000
1500
1000

500
Bytes MN Legend
(I

I e e e
TimeStep (2 second(s}}
% ;I_Iﬂ Egifnundatinn
9500
q000
8500
8000
7500
7000
B500
EO00
5500
5000
4500
4000
3600
3000
2500
2000
1500
1000
500

Bytes Legend
o I
TimeStep (2 second{s}}

Latest Sent
M
Total Sent

Latest Received
M

Total Received

Latest Sent
M
Total Sent

Latest Received
M

Total Received

Figure 12. DBP and Foundation Transform Protocol Running at Low Resolution

2. XML Descriptions

The DBP protocols each have two pieces. a general- DBP Java program that
describes the functionality of the protocol, and an XML document that describes the data
types and initial values for the protocol. The relationship between the general-DBP Java
class file and XML documents that define protocols is one-to-many. The first time each

45

XML document is used by a protocol, it must be parsed. During testing, the protocols
parsed the required documents smoothly and without error. Each XML file can be edited
with any text editor. The XML documents can have their data-type descriptions and
initial values changed quickly and easily this way.
C. NETWORK MONITOR ANALYSIS

Operation of the network monitor has been verified by comparing known packet
and byte quantities sent and received with the quantities reported by the network monitor.
The output graph displayed by the monitor is easy to read and gives a clear picture of

bothe current and ongoing network state.

A concern, as with most monitoring utilities, is whether the load put on the system
to gather networking data is worth the information gathered. A series of empty protocols
tests were run without any network monitoring actions being performed. The transform-
high protocol was selected since it puts the greatest load on the system. The CPU
utilization was reported and compared to the same test in which the data- gathering was
enabled. These measurements are presented in figure 12. They show that approximately
2 %% of the CPU utilization is required to collect this data at the target 10% CPU

Utilization.

46

Percent CPU Utilization

70 A

60

CPU Utilization - Transform High Protocol With and Without Network Monitoring

]

50

40

30

20

10

-10 -

1000 2000 3000 4000 5000

Packets Per Second

Figure 13. CPU Utilization Transform High - With and Without Data Collection

47

6000

D. METRICSANALYSIS

The metrics analysis investigates the effects on CPU load and pecket loss of
various packet sending rates, packet sizes, and physical transmission media. The results
of this analysis are used to determine what, if any, relationships exist between these
metrics.

1. Ethernet Packet L oss

The maximum rate that packets can be sent was minimally affected by the packet
size. The maximum sending rate was approximately 5,600 packets-per-second. The
packet loss for the Ethernet testing was affected mostly by the rate at which the packets
were sent, and unaffected by the packet size. The packet loss for al three packet types
increased exponentially with the sending rate. The best fit is a third-order polynomial
graph. The packet losses for all packet types were between 1.5% and 4.5% at the

maximum sending rate.

The packet loss for Ethernet testing was a so affected by the size of the packets
being sent. For both the high-resolution (138 bytes) and the low-resolution (74 bytes)
transform packets, minimal (0.1%) packet loss began at a sending rate of 800 packets-
per-second. For the high-resolution animation protocol packet, the same minimal packet
loss began at about 1,500 packets-per-second. At the maximum sending rate, the loss
rates were around 4%, 2.5% and 1.5% for the transform:high, transform-low, and

animation-high protocol packets respectively.

48

Percent Packet Loss

5.0%

4.0%

3.0%

2.0%

1.0%

0.0%

-1.0%

Figure 14. Packet Loss Transform High — Ethernet (maximum value 4.2%)

Packet Loss - Tranform High (138 Byte) Packets Using Ethernet 100 Mbps

)Il

1000

2000

3000

4000

5000

60

00

Sending PPS

49

Percent Packet Los:

3.5%

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

-0.5%

Packet Loss - Tranform Low (74 Byte) Packets Using Ethernet 100Mbps

—

2000 3000 4000

5000

60

00

Sending PPS

Figure 15. Packet Loss Transform Low - Ethernet (maximum value 2.9%)

50

Percent Packet Loss

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

-0.5%

Packet Loss - Animation High (19 Byte) Packets Using Ethernet 100 Mbps

S~

e
[—

60

00

Sending PPS

Figure 16. Packet Loss Animation High - Ethernet (maximum value 2.2%)

51

2. MODEM Packet L oss

For all three packet sizes and for various sending rates, including the maximum
sending rate, there were no packets lost over the modem connection. The maximum
achieved sending rate by modem was 94 packets per-second, which is not sufficiently

large to cause the receiving CPU to drop any packets.

The constrained available bandwidth did not cause the UDP packets to drop
during the send operation as initialy predicted. The TCP/IP stack checks the socket send
buffer and if it is full, blocks the process from sending more packets. This happens in the
sosend() method in the TCP/IP stack. The modem send-buffer fills quickly, sinceit is
constrained by the slow connection, and imposes constant delays on the sending
application. This happens even though the packets are UDP.

3. Ethernet CPU Usage

For Ethernet connections, the load on the receiving machine’s CPU is linearly
proportional to the sending rate as measured in packets-per-second. The CPU utilization
percentage is the same for all three packet types sent. The maximum CPU utilization is
approximately 60%, at the highest achieved sending rate of approximately 5,600 packets-

per-second.

The lack of correlation between packet size and CPU utilization is not surprising.
The CPU must use cycles to process each packet that arrives, which can add up quickly.
This is one reason why Ethernet cards are generally set to listen to certain ports and not

be promiscuous (i.e. not listen to all ports).

52

70

60

50

40

CPU Percent Utilizatior
w
o

20

10

CPU Utilization - Transform High (138 Byte) Packets Using Ethernet 100 Mbps

i

1000 2000 3000
Sending Rate (PPS)

Figure 17. CPU Utilization High-ResolutionTransform Protocol - Ethernet

53

4000

5000

6000

70

60

50

N
o

CPU Percent Utilizatior

w
o

20

10

CPU Utilization - Transform Low (74 Byte) Packets Using Ethernet 100 Mbps

2000 3000 4000 5000
Sending Rate (PPS)

Figure 18. CPU Utilization Low-ResolutionTransform Protocol - Ethernet

54

6000

70

60

50

S
o

CPU Percent Utilization

w
o

20

10

CPU Utilization - Animation High (19 Byte) Packets Using Ethernet 100 Mbps

1000 2000 3000 4000 5000
Sending Rate (PPS)

Figure 19. CPU Utilization High-Resolution Animation Protocol - Ethernet

55

6000

CPU Percent Utilization

CPU Utilization - Transform High (138 Byte) Packets Using MODEM

50 100 150 200 250 300
Sending Rate (PPS)

Figure 20. CPU Utilization High-Resolution Transform Protocol - Modem
(maximum value 7.5%)

56

350

CPU Percent Utilization

CPU Utilization - Transform Low (74 Byte) Packets Using MODEM

T

—H

50 100 150 200
Sending Rate (PPS)

Figure 21. CPU Utilization LowResolution Transform Protocol - Modem

(maximum value 7.6%)

57

250

300

350

CPU Percent Utilization

CPU Utilization - Animation Protocol (19 Byte) Packets Using MODEM

—H

0 50 100 150 200 250 300 350
Sending Rate (PPS)

Figure 22. CPU Utilization High- Resolution Animation Protocol - Modem
(maximum value 7.5%)

58

4, Modem CPU Usage

The MODEM CPU usage also has alinear correlation with the sending rate,
plotted in Figures 20-22, in packets-per-second. The MODEM CPU usage, like the
Ethernet CPU usage, is mostly independent of the tested packet sizes. The CPU usage
reaches a maximum of around 3.5% at the maximum packet sending rate of 94 packets-
per-second (animation high protocol).

5. Ethernet Cyclic Behavior

CPU utilization is observed to have a spike approximately every 3 %2 minutes.
This occurs only while the receiving machine was actually receiving packets sent by
NPSNET-V. The apparent cause for this occurrence is Java garbage collection. Inthe
case of low data rates being sent, the spike is pronounced, and with high data rates the

CPU utilization takes on a sinusoidal appearance.

This cyclic behavior caused many measurement inconsistencies in earlier tests.
Severa unsuccessful attempts were made to either control or predict the garbage
collection. Since this phenomenon occurs during actual implementation in a virtual
environment as well as during experimental testing, all of the test runs were redone and
the data-collection interval was increased to four minutes in order to ensure consistent
inclusion of a solitary garbage collection event. This strategy ensures more realistic
conclusions, since the garbage collection occurs consistently during simulation tests.

6. M odem Packets Per Second

The number of packets per second sent by modem were expected to be around 30
maximum, not the observed 300. The high-resolution transform protocol was used to test

this surprising initial result further. The high-resolution packet is 138 bytes with 10

59

additional bytes prepended by NPSNET-V. UDP adds 8 bytes, |P 20 bytes and PPP 18
bytes as header information. Thisresultsin atotal of 198 bytes for each packet. If the
entire 56K bpsis utilized, 7000 bytes can theoretically be sent across the wire per second.
This means an estimated 35 200- byte packets per second might be sent for thistest. Thus

the 300-packet result is quite surprising.

Modem compression hardware is designed to maximize bandwidth capacity
limitations. The headers are compressed, as is the payload. The initia payload consisted
of byte arrays filled with the default values of zero. Next severa byte arrays were
randomly created with random values and the sending application would switch between
them. Again, surprisingly, thisyielded the same results. Finally, in another approach,
each byte array was uniquely created with random generation, which finally resulted in
an expected maximum sending rate of 30 packets-per-second. Thus the expected modem
capacity matched theoretical predictions, and the demonstrated capabilities of modem
compression on repetitive traffic is quite impressive.

E. SUMMARY

This chapter discusses the experimental results and analyses used to conduct all
three major portions of this thesis. The DBP protocols are written in Java, and each have
supporting XML files that describe the data type definitions. The network monitor
reports the current state of the network to indicate when to switch resolutions with a DBP
protocol. The network testing is designed to establish the optimization points in the
NPSNET-V networking architecture, and identifies where to set the network monitor

state thresholds.

60

THISPAGE INTENTIONALLY LEFT BLANK

61

VI. CONCLUSIONS

A. INTRODUCTION

This chapter presents the conclusions from the experiments performed and
analyses derived in this thesis. Two interesting opportunities for future work are
presented that can further enhance the optimization of virtual environment networking.

B. ANALYSIS
1. CPU Utilization

There is adirect correlation between CPU Utilization and the sending rate in
packets-per-second. For the (1 Ghz) machines used to conduct the experiments using
NPSNET-V, the relationship on an Ethernet connection can be estimated by y = 0.0114x,
wherey isthe CPU percent utilization (0-100%) and x is the number of packets per

second sent to the receiving machine.

Similarly the direct correlation between CPU Utilization and packets per second
sent for modem NPSNET-V connections can be estimated. The correlation can be
estimated with: y = 0.025x, wherey is the CPU Utilization percentage (0-100%) and X is

the number of packets per second sent.

The initial objective for CPU utilization was to limit the percent used for
networking to 10%. For Ethernet connections, this equates to alimit of 877 packets of
interest per second. For modem connections, thisis estimated at 400 packets per second,
which exceeds the maximum achieved rate of 94 packets per second. The network busy
threshold is set at 850 packets per-second for ethernet as a default value, based on these

findings. For modem connections, thisis estimated at 94 packets per second.

62

The low threshold is set initially at 850 packets-per-second. The Network
Monitor recal culates this value during execution to reflect the average value, in packets
per-second, along with the standard deviation of the mean. Setting the threshold thisway
will continue to report the network state as busy until the traffic has resumed a normal
flow rate. Thiswill help prevent thrashing during surges. Further feedback may be
necessary to enable proper participation by modem connected hosts.

2. Packet L oss

The maximum packet loss observed is around 4%, which is surprisingly low.
Keeping with the original requirement of limiting the CPU utilization for networking to
10%, the number of packets per second is 877 maximum for Ethernet connections. This
results in an approximately 0.1% packet loss. For modem connections, there has been no
observed packet loss. These findings indicate that significantly large distributed virtual

environments may be possible for modem-connected participants.
3. Packet Size

The packet size had minimal (if any) impact on the tested metrics for Ethernet
connections. For modem connections, the packet size affects the sending rate by causing
the modem send buffer to fill quicker for larger packets. The CPU utilization and packet
loss are mainly affected by the rate of packet sending, especially for Ethernet
connections. For this reason, packet aggregation ought to be considered to limit the total
number of packets sent across the network. Reducing packet rates further reduces the

possibility of router congestion.

4. DBP Protocols

63

The DBP protocols are easy to use and there were no problems switching between
XML documents for any of the protocols. Switching between high-resolution and |ow-
resolution protocols works effectively. Nevertheless, for these experiments changing the
resolution has little impact on network optimization. Combined with packet aggregation
or under congestion conditions, being able to specify packet sizes with XML described
documents might be a great contribution towards automatic network optimization.

Further testing on more heavily utilized networks will likely yield further insights.

The XML-described protocols are easy to edit at runtime using any text editor.
Similarly, such protocols can be authored or modified by network-aware software
applications, including software agents. The data types declared in the XML document
must be supported by the accompanying Java class file. Data types that support the
existing protocols are now implemented and work successfully during execution.
Although the current experimental implementation does not gain much by reducing
packet sizes, tremendous design and implementation advantages can be gained by the
runtime extensibility offered by XML-described protocols.

C. FUTURE WORK

There are two principle areas of future work: network management and multi-
agent monitoring. Both of these areas outline improvements to application-based
network optimization.

1 Networ k Manager

Instead of implementing a network management scheme that simply reacts to
basic high-resolution and low-resolution thresholds, a more sophisticated application

oriented network manager might be implemented. Instead of making adjustments based

64

on single-period observations, such as an increase in average packets-per-second,
automated decisions can be made based on trends observed as a result of key parameter
combinations, for example an increase in packets- per-second combined with out-of-order
delivery may indicate oncoming congestion that demands immediate attention (i.e. better
inferences can be made than merely using a simple observation of an increase in packets-

per-second).

The networking parameters currently monitored are packets-per-second and
bytes-per-second. Unfortunately, direct measurements of overall CPU utilization were
not possible using native Java libraries. Nevertheless, based on manual measurements
and correlations established by experimentation, estimates of CPU utilization and packet
loss can be achieved. There are also many other network parameters that can be
measured. These include buffer sizes, out-of-order packet arrivas, latency, jitter (i.e.
latency variations), and particular performance considerations based on the specific

application being used.

Like the current implementation, an advanced network manager can provide
constantly updated information to the Area of Interest Manager (AOIM) about the
network status. The AOIM can then make better-informed optimization decisions. If the
best solution includes networking changes, the network manager is notified and directed
to implement it. Such a methodology can even occur in a distributed fashion across all

participants in a distributed virtual environment.

The proposed design motivation for this network manager is the “better, faster,
cheaper: pick any two” paradigm. Better solutions can include greater resolutions,

fidelity and correctness. Faster solutions include increased speeds for computation and
65

network transmissions. Cheaper solutions include lightweight solutions such as smaller
payloads, less computationally intense payload algorithms, or further sacrifices in either
of the other two solution strategies. Automating analysis and optimizations of such
tradeoffsis arich areafor future work.

2. Multi-Agent Monitor

NPSNET-V provides an architectural framework on which to run avirtual
environment. The current networking solutions may not work with a future virtual
environment. A networking monitor created as part of a Multi-Agent System might learn

how to optimize such a distributed system and implement an optimized solution.

Agents have the ability to make adjustments to solution strategies based on
feedback from the distributed systems they are monitoring. An agent solution is also able
to weed through a high number of input parameters and then determine an appropriate

networking strategy.

The proposed approach with which to implement a multi-agent monitor is to
populate each system with an organization of agents that gather their information through
the Entity Dispatcher. These agents might be organized as advisors to a central agent.
The central agent can choose courses of action based on the current priorities and also
recommendations by its advisor agents. Such a central agent (or set of agents) will likely

have the authority to direct or advise AOIMs as well.

An experimentally grounded and dynamically scalable approach, similar to the
monitoring architecture presented in this thesis, will enable the creation and maintenance

of rich and responsive large-scale virtual environments.

66

D. CONTACT INFORMATION

To obtain an electronic copy of the NPSNET-V code, contact one of the Research

Faculty through the website at http://www.npsnet.org/~npsnet/v/

67

APPENDIX A

A. INTRODUCTION
This appendix provides the Java and XML source code for the DBP Transform

protocol.

B. DBP TRANSFORM JAVA SOURCE CODE
package org. npsnet.v.test.dabp. dbpfoundati on. dbputil;

inmport java.io.*;

import java.net.*;

inmport java.util.*;
inmport java.util.Vector.*;
i mport javax.vecnath. *;
inmport javax.nedia.j3d.*;
inmport java.lang.*;

i nport org.npsnet.v.sys.*;

i nport org.npsnet.v.net.*;

i mport org.npsnet.v.test.dabp. dbpfoundation. *;
i mport org.web3d. vrtp. dabp. *;

i mport org.web3d. vrtp. dat at ypes. *;

/**

* A protocol for passing information about <code>Transformabl e</ code>
entities.

* * @uthor Bill Fischer

*/
public class DBPTransfornProtocol extends org.npsnet.v.sys. Protocol
i mpl errent s Serializable
{
/**
* The class's version string.
*/
private static final String classVersion = "$Revision: 1.2 $";
/**

* The known | ocation of this class.

*/

private static final String classCodebaseString =
"http://honer.cs.nps.navy.nil/renmote/";

/**

* The singleton instance of this class.

*/

private static DBPTransfornProtocol transfornProtocol = null;

/**

* The known | ocation of this class.

*/

private static final String PROTO URL =
"http://honer.cs.nps.navy.nil/renmote/";

/**

* The URL to the XML file describing the H gh Resol uti on packet
| ayout

68

*/
String hiXm File = new
String("c:/npsnetV/ org/ npsnet/v/test/dabp/ Tr ansf or nPr ot ocol Packet . xm ");

/**
* The URL to the XML file describing the H gh Resol uti on packet
| ayout
*/
String loXm File = new
String("c:/npsnetV/org/ npsnet/v/test/dabp/ Transf or nProt ocol Packet LoRes. xm

I");
/**
* DABP protocols for high resolution
*/
private org.web3d. vrtp. dabp. Prot ocol hi ResDabpPr ot ocol
org. web3d. vrt p. dabp. Prot ocol (hi Xm Fi |l e);

new

/**
* DABP protocols for high resolution
*/
private org.web3d. vrtp. dabp. Prot ocol | oResDabpPr ot ocol
org. web3d. vrt p. dabp. Prot ocol (1 oXm Fi |l e);

new

/**
* Returns this class's version string.
*/
public String getd assVersion() {
return cl assVersion;
}

/**

* Returns this class's codebase.

*/

public URL getd assCodebase() {
try { return new URL(cl assCodebaseString); }
cat ch(Mal formredURLException e) { return null; }

}
/**
* Returns the singleton instance of <code>Transf or nProt ocol </ code>.
*/
public static DBPTransfornProtocol getlnstance() {
if(transfornProtocol!=null) return transfornProtocol;
el se {

try {
org. npsnet.v.sys. Protocol tnmpProt =

get Si ngl eton("org. npsnet. v. test.dabp. dbpfoundati on. dbputil . DBPTransf or nPr ot ocol
", classVersion);
i f(tnpProt == null)
t ransf or nPr ot ocol
el se
t ransf or mPr ot ocol

new DBPTr ansf or mPr ot ocol () ;

(DBPTr ansf or nPr ot ocol) t npProt ;
}

catch(| DServer Exception ise) {
Systemout. println(ise);
Systemexit(1);

}

return transfornProtocol;

69

/**

* Constructor; takes a few paraneters, which allow us

* to operate in the world. <p>

*

* Note that this constructor is for use with new EntityMasters--

* W create a new entity and send out information on it. The

* creation of the entity registers a new entity ID and new
protocol | Ds

changes

al |

t hose

position. x

* to go along with it.<p>

* @aram pEntity entity that we update

*/

publ i ¢ DBPTransfornProtocol () throws |DServerException

/1 A new instance requires a new I D

super (" DBPTransf ornProt ocol ", true);
}
/**
* Constructor. Note that this constructor is for use with
* things we have discovered fromthe net. we get in a new
* message with an existing ID. That neans we don't have to
* | ook up the ID on the |DServer. <p>
*
* @aramplD id of the protocol, gleaned fromnetwork traffic
*

publ i ¢ DBPTransf or nProt ocol (1 ong pl D) throws |DServer Exception

{
super (pl D, | DCache. get| DCache(). get NaneFor | D(pl D)) ;

* This receives a packet fromthe entity and serializes it, ie,

* all the data fields into a byte array that we can send across the
* network. ADU is sone nom nal superclass from DABP that subsunes

* packets.
*/
public byte[] serializeADU(Cbject pPacket Data)
{
byt e serializedData[] = null;
ADUDat a transformADU = nul | ;

transformADU = (ADUDat a) pPacket Dat a;
Byt eArr ayQut put St r eam oSt ream = new Byt eArrayQut put Strean() ;
Dat aQut put Stream dos = new Dat aQut put StreamoStream ;
transf or mMADU. seri al i ze(dos);
serializedData = oStreamtoByteArray();
return serializedDat a;

* Receives a packet fromthe EntityDi spatcher (or whatever.) The
* data we get in is just an array of bytes--we have to interpret

* bytes so that we can do sonmething with them This consists of two
* things: determing syntax, so we can retrieve the field named
* "position.x"; and determ ning semantics, so we know that

* refers to the location of the entity in 3-space. W instantiate
* an ADUDat a packet, lay it out in the format described by the
* protocol's XM. docunment, and fill in the packet's fields fromthe

70

* incom ng byte stream dat a.

*/
public void recei vePacket (byte[] pData, NetworkAware entity)
{
Byt eArrayl nput St ream bai s = new Byt eArrayl nput Strean{ pDat a) ;

/1 Tenporary workaround; prevents EntityMasters from bei ng
/1 nodified renotely

if(entity instanceof EntityMaster) return;

if(entity instanceof DBPTransfornmabl eMaster) return;

/1 W only get packets of one type, so we don't need to check

/1 on format beforehand (fanous |ast words).

ADUDat a packet = null;

packet = hi ResDabpProtocol . bi naryDat aToADU(pDat a); //bi nar yDat aToADU

try

{
i f(((UnsignedByte)(packet. get("markerValue"))).byteVal ue() == 98)
{

i f(((UnsignedByte) (packet. get ("packet Resol ution.resolution"))).byteVal ue() ==
1

{ packet = | oResDabpProtocol . bi naryDat aToADU(pDat a) ;
/1 bi nar yDat aToADU
Y}/ end if
/1 some tenporary variabl es
doubl e transformArray [] = new doubl e[16];
doubl e val uel, value2, value3, value4, valueb, value6, value7,
val ues,
val ue9, val uelO, valuell, valuel2, valuel3, val uel4,
val uels,
val uel6;
int count = O;
String intString;
String fields = "ArrayVal ues. val ue";
hj ect arrayVal s;

whi | e(count <= 15)

intString = Integer.toString(count);

fields = fields + intString;

arrayVal s = packet.get(fields);

transformArray[count] =
((PrimtiveNunber)arrayVal s). doubl eVal ue();

fields = "ArrayVal ues. val ue";

count ++;

}//end while

TransfornBD transform = new Transforn8D(transformArray);
((DBPTransformabl e)entity).set Transforn{transfornj;

/1 System out. println("Receive side --
Tr ansf or nPr ot ocol : recei vePacket () : packet == "+ packet);
Y/ end if
el se

{ Systemerr.println("Wong marker type (not 98)");
}/ 1 end el se

Y/ end try

cat ch(Fi el dNot FoundException fnfe)
{ Systemerr.printin("Field not found! " + fnfe);
}// end catch

return;

71

}/1 end receivePacket ()

/**

* I nvoked when an entity is nodified. The entity's transform

information

* is |oaded into an ADUData packet, which is then serialized and

passed
* to the Entity Master.
*
/
public void entityChanged(Entity e, Object info)
{

i f(e instanceof DBPTransformabl eGhost) return;

ADUDat a transformADU = nul | ;
transf or mMADU = new ADUDat a(new
ADU(hi ResDabpPr ot ocol . get SchemaNaned(" TPPPDU"))) ;

if(resolution == 1)
{ transformADU = new ADUDat a(hew
ADU(| oResDabpPr ot ocol . get SchemaNared(" TPPPDU"))) ;

}

/11 oad Vector3d position
doubl e[] transformArray = new doubl e[16];

Transforn8D transform = new TransfornBD() ;
((DBPTr ansf ormabl e) e) . get Transform(transform;
transform get (transformArray);

int count = O;
String intString;
String fields = "ArrayVal ues. val ue";

//wite the resol ution val ue
try

t ransf or mMADU. put (" packet Resol uti on. resol uti on",

Unsi gnedByt e(resol ution));
Y/ end try
catch(Fi el dTypeException fte)

new

{ Systemerr.printin("Field Type not found: " + fte);

}/1 end catch
cat ch(Fi el dNot FoundException fnfe)

{ Systemerr.printin("Field not found: " + fnfe);

}// end catch
whi | e(count <= 15)
{
intString = Integer.toString(count);
fields = fields + intString;
try

/1 giving up sone efficiency here to maximze flexibility &

r obust ness.

/1 Can set the fields types individually by type in the XM

docunent

i f(transformADU. get (fi el ds) instanceof Doubl ePrecision)

transfor mDU. put (fi el ds, new
Doubl ePreci si on(transformArray[count]));

el se if(transformADU. get (fields) instanceof SinglePrecision)

transformADU. put (fields, new
Si ngl ePreci sion((float)transformArray[count]));

Y/l end try
72

catch(Fi el dTypeException fte)

{ Systemerr.printin("Field Type not found: " + fte);
}/1 end catch

cat ch(Fi el dNot FoundExcepti on fnfe)

{ Systemerr.println("Field not found: " + fnfe);
}/1 end catch
fields = "ArrayVal ues. val ue";
count ++;
}//end while
/1 Systemout.println("Send side ---
TransfornProtocol : entityChanged():transformADU == " +

transformADU) ; [/ ******xxxxxxx838383888888888888888

[/ first time thru and field values may be null
i f(transformADU. get AduNanme() == "") return;

/'l Serialize and send transformdata for the entity
byte[] data = serializeADU(transformADU);

Set distroSet = AO MgetAO M).getDistributionSet(e, this);

EntityDi spatcher. getEntityD spatcher().sendPacket(this,

e.getl (),
di stroSet,

dat a) ;
}/1 end entityChanged()

C. DBP TRANSFORM HIGH RESOLUTION XML SOURCE DOCUMENT

<?xm version="1.0"?>
<! DOCTYPE Pr ot ocol SYSTEM "./Dynani cBehavi or Prot ocol . dtd">

<Pr ot ocol nanme="TRANSFORM PACKET"
mar ker Posi ti on="0"
mar ker Type="or g. web3d. vrt p. dat at ypes. Unsi gnedByt e"
clientStub="http://some.url.conlbaz">

<Type name="org.web3d. vrtp. dat at ypes. Doubl ePr eci si on"

val ue="file://org.web3d. vrtp. dat at ypes. Doubl ePr eci si on" ></ Type>
<Type nane="org.web3d. vrtp. dat at ypes. Unsi gnedByt e"

val ue="file://org. web3d. vrtp. dat at ypes. Unsi gnedByt e" ></ Type>
<Type nane="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"

val ue="file://org. web3d. vrt p. dat at ypes. Si gnedl nt eger " ></ Type>

<Channel nulticast Address="225.6.9.121"
mul ticastPort = "1616" />

<Packet Header nanme="TPP">
<Fi el d name="sequence"
t ype="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initialvVal ue="0"/>
<Fi el d nanme="ti nest anmp"

type="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"
initialVal ue="0"/>

73

</ Packet Header >
<ADU nane="TPPPDU" mar ker Val ue="98">

<Fi el d nane="nmar ker Val ue"

type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"

initialValue="98"/>
<Structure name="packet Resol ution">

<Fi el d nane="resol uti on"

type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"

initialVval ue="2"/>
</ Structure>
<Structure nanme="ArrayVal ues">

<Fi el d name="val ue0"

type="org. web3d. vrt p. dat at ypes.

initial Val ue="0"/>

<Fi el d nane="val uel"

type="org. web3d. vrt p. dat at ypes.

initialValue="0"/>

<Fi el d name="val ue2"

type="org. web3d. vrt p. dat at ypes.

initialValue="0"/>

<Fi el d name="val ue3"

type="org. web3d. vrt p. dat at ypes.

initialValue="0"/>

<Fi el d name="val ue4"

type="org. web3d. vrt p. dat at ypes.

initial Val ue="0"/>

<Fi el d name="val ueb"

type="org. web3d. vrt p. dat at ypes.

initial Val ue="0"/>

<Fi el d nane="val ue6"

type="org. web3d. vrt p. dat at ypes.

initialValue="0"/>

<Fi el d name="val ue7"

type="org. web3d. vrt p. dat at ypes.

initialValue="0"/>

<Fi el d name="val ue8"

type="org. web3d. vrt p. dat at ypes.

initialValue="0"/>

<Fi el d name="val ue9"

type="org. web3d. vrt p. dat at ypes.

initialValue="0"/>

<Fi el d nane="val uel0"

type="org. web3d. vrt p. dat at ypes.

initial Val ue="0"/>

<Fi el d name="val uell"

74

Doubl ePr eci

Doubl ePr eci

Doubl ePr eci

Doubl ePr eci

Doubl ePr eci

Doubl ePr eci

Doubl ePr eci

Doubl ePr eci

Doubl ePr eci

Doubl ePr eci

Doubl ePr eci

Si

Si

Si

si

si

Si

Si

Si

si

si

Si

on"

on"

on

on

on

on"

on"

on

on

on

on"

type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initialValue="0"/>

<Fi el d name="val uel2"
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial Val ue="0"/>

<Fi el d nane="val uel3"
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial Val ue="0"/>

<Fi el d nanme="val uel4"
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial val ue="0"/>

<Fi el d nanme="val uel5"
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initialVvalue="0"/>

</ Structure>
</ ADU>

</ Pr ot ocol >

D. DBP TRANSFORM LOW RESOLUTION XML SOURCE DOCUMENT

<?xm version="1.0"?>
<! DOCTYPE Protocol SYSTEM "./Dynam cBehavi or Prot ocol . dt d">

<Pr ot ocol nane="TRANSFORM PACKET"
mar ker Posi ti on="0"
mar ker Type="or g. web3d. vrt p. dat at ypes. Unsi gnedByt e"
clientStub="http://sone.url.conl baz">

<Type name="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"

val ue="file://org. web3d. vrtp. dat at ypes. Unsi gnedByt e" ></ Type>
<Type nane="org. web3d. vrtp. dat at ypes. Si gnedl nt eger"

val ue="file://org. web3d. vrt p. dat at ypes. Si gnedl nt eger " ></ Type>
<Type nane="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"

val ue="file://org.web3d. vrtp. dat at ypes. Si ngl ePr eci si on"></ Type>

<Channel multicast Address="225.6.9. 121"
mul ticastPort = "1616" />

<Packet Header nanme="TPP">

<Fi el d nanme="sequence"
type="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initialValue="0"/>

<Fi el d nane="ti nest anp”
t ype="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initialvVal ue="0"/>

</ Packet Header >
<ADU nane="TPPPDU" mar ker Val ue="98">
<Fi el d nanme="nmar ker Val ue"

type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initial Val ue="98"/>

75

<Structure name="packet Resol ution">
<Fi el d nane="resol uti on"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialVvalue="1"/>
</ Structure>
<Structure nanme="ArrayVal ues">
<Fi el d nane="val ue0"

type="org. web3d. vrtp. dat at ypes. S
initial val ue="0"/>

ngl ePreci si on"

<Fi el d nanme="val uel"
type="org. web3d. vrtp. dat at ypes. S
initialVvalue="0"/>

ngl ePreci si on"

<Fi el d nanme="val ue2"

type="org. web3d. vrt p. dat at ypes. S
initialValue="0"/>

ngl ePreci si on

<Fi el d nanme="val ue3"
type="org. web3d. vrtp. dat at ypes. S
initial val ue="0"/>

ngl ePreci si on

<Fi el d nanme="val ue4"
type="org. web3d. vrt p. dat at ypes. Si
initial Val ue="0"/>

ngl ePreci si on

<Fi el d nanme="val ue5"
type="org. web3d. vrtp. dat at ypes. S
initial val ue="0"/>

ngl ePreci si on"

<Fi el d nanme="val ue6"
type="org. web3d. vrt p. dat at ypes. Si
initialVvalue="0"/>

ngl ePreci si on"

<Fi el d nanme="val ue7"

type="org. web3d. vrt p. dat at ypes. S
initialValue="0"/>

ngl ePreci si on

<Fi el d nanme="val ue8"
type="org. web3d. vrt p. dat at ypes. S
initial val ue="0"/>

ngl ePreci si on

<Fi el d name="val ue9"
type="org. web3d. vrt p. dat at ypes. S
initial Val ue="0"/>

ngl ePr eci si on

<Fi el d nane="val uel0"
type="org. web3d. vrtp. dat at ypes. S
initialVvalue="0"/>

ngl ePreci si on"

<Fi el d nane="val uell"
type="org. web3d. vrt p. dat at ypes. S
initialVvalue="0"/>

ngl ePreci si on"

<Fi el d name="val uel2"

type="org. web3d. vrt p. dat at ypes. S
initialValue="0"/>

ngl ePreci si on

76

<Fi el d nane="val uel3"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initialValue="0"/>
<Fi el d nanme="val uel4"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initialValue="0"/>
<Fi el d name="val uelb"
type="org. web3d. vrt p. dat at ypes. Si ngl ePreci si on"
initialValue="0"/>
</ Structure>
</ ADU>

</ Pr ot ocol >

E. SUMMARY
The source code and source documents presented in this appendix work together

to provide both a high and low resolution capability for the DBP transform protocol.

77

APPENDIX B

A. INTRODUCTION
This appendix provides the Java and XML source code for the DBP Inertia

protocol.

B. DBP INERTIA JAVA SOURCE CODE
package org. npsnet.v.test.dabp. dbpfoundati on. dbputil;

inmport java.io.*;

import java.net.*;

inmport java.util.*;

inmport java.util.Vector.*;
i mport javax.vecnath.*;
inmport javax.nedia.j3d.*;
inmport java.lang.*;

i mport org.npsnet.v.sys.*;

i mport org.npsnet.v.net.*;

i mport org.npsnet.v.test.dabp. dbpfoundation. *;

import org.npsnet.v.test.dabp. dbpfoundation. dbputil.*;
i mport org.web3d. vrtp. dabp. *;

i mport org.web3d.vrtp. datatypes. *;

/**

* A protocol that passes information about inertial state (position,

* |inear and angul ar velocity).
*

* @uthor Bill Fischer
*/

public class DBPlnertiaProtocol extends org.npsnet.v.sys. Protocol
i mpl ements Serializable

{

/**
* The class's version string.
*/
private static final String classVersion = "$Revision: 1.3 $";
/**
* The known | ocation of this class.
*/
private static final String classCodebaseString =
“"http://honer.cs.nps.navy.nil/renmote/";

/**

* The singleton instance of this class.

*/

private static DBPlnertiaProtocol inertiaProtocol;

/**

* The known | ocation of this class.

*/

private static final String PROTO URL =
“http://honer.cs.nps.navy.ml/renote/";

/'k*

78

* The URL to the XML file describing the H gh Resol uti on packet

| ayout
*/
String hiXm File = new
String("c:/npsnetV/org/npsnet/v/test/dabp/I|nertiaProtocol Packet.xm");
/**
* The URL to the XML file describing the H gh Resol uti on packet
| ayout

*/

String loXm File = new
String("c:/npsnetV/org/ npsnet/v/test/dabp/InertiaProtocol Packet LoRes. xm "

/**
* DABP protocols for high resolution
*/
private org.web3d. vrtp. dabp. Prot ocol hi ResDabpPr ot ocol
org. web3d. vrt p. dabp. Prot ocol (hi Xm Fil e);

new

/**
* DABP protocols for |ow resolution
*/
private org.web3d. vrtp. dabp. Prot ocol | oResDabpPr ot ocol
org. web3d. vrt p. dabp. Prot ocol (|1 oXm Fi |l e);

new

/**
* Returns this class's version string.
*/
public String getd assVersion() {
return cl assVersion;
}

/**

* Returns this class's codebase.

*/

public URL getd assCodebase() {
try { return new URL(cl assCodebaseString); }
cat ch(Mal f or mredURLException e) { return null; }

}
/**
* Returns the singleton instance of <code>Transf or nProt ocol </ code>.
*/
public static DBPInertiaProtocol getlnstance() {
if(inertiaProtocol!=null) return inertiaProtocol;
el se {

try {
org. npsnet.v.sys. Protocol tnmpProt =

get Si ngl eton("org. npsnet. v. test. dabp. dbpfoundati on. dbputil . DBPI nerti aProtocol ",
cl assVersi on);

if(tmpProt == null)
inertiaProtocol = new DBPInertiaProtocol ();
el se
i nertiaProtocol

(DBPI nerti aProtocol)tnpProt;
catch(1 DServer Exception ise) {

Systemout. println(ise);
Systemexit(1);

79

return inertiaProtocol;

}

}

/**

* Constructor; takes a few paraneters, which allow us

* to operate in the world. <p>

*

* Note that this constructor is for use with new EntityMasters--

* W create a newentity and send out information on it. The

* creation of the entity registers a newentity ID and new
protocol I Ds

changes

al |

t hose

* to go along with it.<p>

* @©@param pEntity entity that we update
*/
public DBPI nertiaProtocol () throws |DServerException

/1 A new instance requires a new I D
super (" DBPI nerti aProtocol ", true);

*

constructor. Note that this constructor is for use with
t hi ngs we have discovered fromthe net. we get in a new
message with an existing ID. That nmeans we don't have to
| ook up the ID on the | DServer.<p>

@aram plD id of the protocol, gleaned fromnetwork traffic

* % ok ko ok * F

~

public DBPInertiaProtocol (long plD) throws | DServerException

{
super (pl D, | DCache. get | DCache(). get NameFor | D(pl D)) ;

* This receives a packet fromthe entity and serializes it, ie,

* all the data fields into a byte array that we can send across the
* network. ADU is sonme nominal superclass from DABP that subsunes

* packets.
*/
public byte[] serializeADU(Cbject pPacket Data)
{
byt e serializedData[] = null;
ADUDat a inertiaADU = nul | ;

i nerti aADU = (ADUDat a) pPacket Dat a;

Byt eArrayQut put St ream oSt ream = new Byt eArrayQut put Stream() ;
Dat aQut put St r eam dos = new Dat aCut put Strean{ oSt reamn ;

i nertiaADU. seri alize(dos);

serializedData = oStreamtoByteArray();

return serializedDat a;

}
/**

* Receives a packet fromthe EntityDi spatcher (or whatever.) The
* data we get inis just an array of bytes--we have to interpret

* bytes so that we can do sonething with them This consists of two
* things: determing syntax, so we can retrieve the field naned

80

* "position.x"; and determ ning semantics, so we know that
position. x

* refers to the location of the entity in 3-space. W instantiate

* an ADUData packet, lay it out in the format described by the

* protocol's XM. document, and fill in the packet's fields fromthe
* incom ng byte stream dat a.

*/

public void receivePacket (byte[] pData, NetworkAware entity)
{

Byt eArrayl nput St ream bai s = new Byt eArrayl nput St rean(pDat a) ;

/1 Tenporary workaround; prevents EntityMasters from bei ng
/1 nodified renotely

if(entity instanceof EntityMaster) return;

if(entity instanceof DBPInertial Master) return;

/1 W only get packets of one type, so we don't need to check
I/l on format beforehand (fanous |ast words).

ADUDat a packet = null;
packet = hi ResDabpProtocol . bi naryDat aToADU(pDat a); //bi naryDat aToADU

/1l some tenporary objects & variables
Vector3d position = null;

Vector3d linearVelocity = null;
Vect or 3d angul arVel ocity = null;
Quat4d orientation = null;

| ong posRef Tine = O;

long orRef Time = 0;

bool ean tinmeCorrect = true;

bool ean | owResPacket = fal se;

try

{
i f(((UnsignedByte)(packet.get("markerValue"))).byteValue() == 99)
{

i f(((UnsignedByte)(packet. get("packet Resol ution.resolution"))).byteValue() ==

1
{ packet = | oResDabpPr ot ocol . bi naryDat aToADU(pDat a) ;
/1 bi nar yDat aToADU

Y/ end if
/1 some tenporary variabl es
doubl e xPos, yPos, zPos, orl, or2, or3, or4, linX [linY, linZ,

angX, angyY, angZ

/1 fill the blank ADUDat a packet with the corresponding fields from

t he
/1 i ncom ng byte stream
xPos =

(doubl e) (((PrimtiveNunber) packet. get ("Position.x")).doubl eValue());
yPos =

(doubl e) (((PrimtiveNunber) packet.get("Position.y")).doubl evVal ue());
zPos =

(doubl e) (((PrimtiveNunber) packet. get("Position.z")).doubl eValue());
position = new Vector 3d(xPos, yPos, zPos);

PrimtiveNunber posPrim =
((PrimtiveNunber) packet. get (" posRef Ti ne. posTi ne"));
i f(posPriminstanceof Longlnteger)
posRef Time = (long) (posPrimlongVal ue());

el se i f(posPriminstanceof Unsignedlnteger)

81

{

I ong sysTine = SystemcurrentTimeMI1is();
long tineMask = Oxffffffff00000000l ;
sysTime = sysTine & tineMask;
Il ong tenplnt = posPrim]l ongVal ue();
posRef Time = (sysTine | tenplnt);

11 end else if

PrimtiveNunber orPrim =
((PrimtiveNunber)packet.get("orRefTinme.orTine"));
i f(orPriminstanceof Longlnteger)
orRef Time = (Il ong) (posPrimlongVal ue());
el se if(orPriminstanceof Unsignedlnteger)
{ I ong sysTine = SystemcurrentTimeMI1is();
I ong timeMask = Oxffffffff00000000l ;
sysTime = sysTine & ti neMask;
Il ong tenmplnt = orPrimlongVal ue();
orRef Time = (sysTinme | tenplnt);
Y1 else if

(doubl e) (((Pr?rr% t_i veNunber) packet. get("orientation.or1")). doubl eVal ue());

(doubl e) (((Prci)rrr?lT t:i veNunber) packet . get ("orientation.or2")).doubl eVal ue());

(doubl e) (((Pr?rrfi t:i veNunber) packet. get("orientation.or3")). doubl eVal ue());

(doubl e) (((Proirrfi t:i veNunber) packet . get ("orientation.or4")). doubl eVal ue());
orientation = new Quat4d(orl, or2, or3, ord);

linX =
(doubl e) (((PrimtiveNunber) packet.get("linearVelocity.x")).doubl evalue());
linYy =
(doubl e) (((PrimtiveNunber) packet.get("linearVelocity.y")).doubl evalue());
linz =
(doubl e) (((PrimtiveNunber) packet.get("linearVelocity.z")).doubl evalue());
linearVelocity = new Vector3d(linX, linY, linZ);
angX =
(doubl e) (((PrimtiveNunber) packet. get ("angul arVel ocity.x")). doubl eVal ue()
);
angyY =
(doubl e) (((PrimtiveNunber) packet. get ("angul arVel ocity.y")). doubl eVal ue()
);
angZ =
(doubl e) (((PrimtiveNunber) packet. get ("angul arVel ocity.z")). doubl eVal ue()
)
angul ar Vel ocity = new Vect or3d(angX, angY, angZ);
/1 Systemout. println("Receive side --
InertiaProtocol : recei vePacket (): packet == "+ packet);

((DBPInertial)entity).setlnertial State(position, posRefTine,
orientation,

orRef Time, |inearVelocity,
angul ar Vel ocity, 1);

Y1 end if

el se

{ Systemerr.println("Wong marker type (not 99)");

}/1 end el se

Y/ end try

cat ch(Fi el dNot FoundException fnfe)

82

{
Systemerr.printin("Field not found! " + fnfe);
}// end catch
return;

}

/**
* | nvoked when an entity is nodified. The entity's inertia

information
* is |oaded into an ADUData packet, which is then serialized and

passed
* to the Entity Master.
*/
public void entityChanged(Entity e, Object info)

{

i f(e instanceof DBPI nertial Ghost) return;
ADUDat a i nerti aADU = nul | ;

i nerti aADU = new ADUDat a(new
ADU(hi ResDabpPr ot ocol . get SchemaNarred(" | PPPDU"))) ;

if(resolution == 1)
i nerti aADU = new ADUDat a(new
ADU(| oResDabpPr ot ocol . get SchemaNared(" | PPPDU"))) ;

/11 oad Vector3d position
doubl e[] positionArray = new doubl e[3];

Vector3d position = new Vector3d();
((DBPl nertial)e).getPosition(position);
position. get(positionArray);

doubl e xPos
doubl e yPos
doubl e zPos

posi tionArray[0];
positionArray[1] ;
posi tionArray[2] ;

/] orientation
doubl e[] orientati onArray = new doubl e[4];

Quat4d orientation = new Quat4d();
((DBPlnertial)e).getOrientation(orientation);
orientation.get(orientationArray);

doubl e or1l
doubl e or2
doubl e or3
doubl e or4

orientationArray[0];
orientati onArray[1];
orientationArray[2];
orientationArray[3];

/'l linear velocity
doubl e[] linearVelocityArray = new doubl e[3];

Vector3d |linearVelocity = new Vector3d();
((DBPInertial)e).getLinearVel ocity(linearVelocity);
I i near Vel ocity. get(linearVel ocityArray);

double IinX = linearVel ocityArray[0];
double linY = linearVelocityArray[1];
double linzZ = linearVel ocityArray[2];

/1 angul ar velocity
doubl e[] angul ar Vel oci tyArray = new doubl e[3] ;

83

Vect or 3d angul arVel ocity = new Vector3d();
((DBPI nertial)e).get Angul ar Vel oci ty(angul ar Vel ocity);
angul ar Vel oci ty. get (angul ar Vel oci tyArray);

doubl e angX = angul ar Vel oci t yArray[0] ;
doubl e angY = angul ar Vel oci tyArray[1];
doubl e angZ = angul ar Vel oci t yArray[2] ;
try

{
/1 l1oad the ADUDat a packet
i nerti aADU. put (" packet Resol ution.resol ution", new
Unsi gnedByt e(resolution));

String tenpString = new String("Position.x");

i f(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
inertiaADU. put (tenpString, new Doubl ePreci sion(xPos));

else if(inertiaADU. get(tenpString) instanceof SinglePrecision)
i nertiaADU. put (tenpString, new SinglePrecision((float)xPos));

tempString = new String("Position.y");

i f(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
inertiaADU. put (tenpString, new Doubl ePreci sion(yPos));

else if(inertiaADU. get(tenpString) instanceof SinglePrecision)
inertiaADU. put (tenpString, new Singl ePrecision((float)yPos));

tempString = new String("Position.z");

i f(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
i nertiaADU. put (tenpString, new Doubl ePrecision(zPos));

else if(inertiaADU. get(tenmpString) instanceof SinglePrecision)
inertiaADU. put (tenpString, new Singl ePrecision((float)zPos));

tempString = new String("posRefTi ne. posTi ne");
if(inertiaADU. get(tenpString) instanceof Longlnteger)
i nerti aADU. put (tenpString, new
Longl nteger (SystemcurrentTimeM I 1is()));

else if(inertiaADU. get(tenpString) instanceof Unsignedlnteger)
{
Il ong sysTime = SystemcurrentTineMI1is();
sysTinme = sysTine & 0x00000000ffffffffl;
int tenplnt = (int)sysTine;
Unsi gnedl nteger uslintTi me = new Unsi gnedl nt eger (tenplnt);
i nertiaADU. put (tempString, uslntTine);
Y/l end else if

tempString = new String("orRefTine.orTime");
i f(inertiaADU. get(tenpString) instanceof Longlnteger)
i nerti aADU. put (tenpString, new
Longl nteger (System currentTimeM I 1is()));
else if(inertiaADU. get(tenpString) instanceof Unsignedlnteger)
{
I ong sysTime = SystemcurrentTineMI1is();
sysTinme = sysTinme & 0x00000000ffffffffl;
int tenplnt = (int)sysTine;
Unsi gnedl nt eger uslintTi me = new Unsi gnedl nt eger (tenplnt);
i nertiaADU. put (tempString, uslntTine);
Y1 end else if

tempString = new String("orientation.orl");

i f(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
inerti aADU. put (tenpString, new Doubl ePrecision(orl));

else if(inertiaADU. get(tenpString) instanceof SinglePrecision)
inerti aADU. put (tenpString, new SinglePrecision((float)orl));

84

tempString = new String("orientation.or2");

if(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
i nerti aADU. put (tenpString, new Doubl ePrecision(or2));

else if(inertiaADU. get(tenmpString) instanceof SinglePrecision)
inertiaADU. put (tenpString, new SinglePrecision((float)or2));

tenpString = new String("orientation.or3");

i f(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
i nerti aADU. put (tenpString, new Doubl ePrecision(or3));

else if(inertiaADU. get(tenmpString) instanceof SinglePrecision)
inertiaADU. put (tenmpString, new Singl ePrecision((float)or3));

tempString = new String("orientation.or4");

i f(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
inertiaADU. put (tenpString, new Doubl ePrecision(or4));

else if(inertiaADU. get(tenpString) instanceof SinglePrecision)
i nertiaADU. put (tenpString, new SinglePrecision((float)or4));

tenpString = new String("linearVelocity.x");

i f(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
inertiaADU. put (tenpString, new Doubl ePrecision(linX));

else if(inertiaADU. get(tenpString) instanceof SinglePrecision)
i nertiaADU. put (tenpString, new SinglePrecision((float)linX));

tempString = new String("linearVelocity.y");

i f(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
i nertiaADU. put (tenpString, new Doubl ePrecision(linY));

else if(inertiaADU. get(tenmpString) instanceof SinglePrecision)
inertiaADU. put (tenpString, new SinglePrecision((float)linY));

tempString = new String("linearVelocity.z");

if(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
inertiaADU. put (tenpString, new Doubl ePrecision(linz));

else if(inertiaADU. get(tenmpString) instanceof SinglePrecision)
inertiaADU. put (tempString, new SinglePrecision((float)linz));

tenpString = new String("angul arVel ocity. x");

i f(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
i nerti aADU. put (tenpString, new Doubl ePreci sion(angX));

el se if(inertiaADU. get(tenpString) instanceof SinglePrecision)
inertiaADU. put (tenmpString, new Singl ePrecision((float)angX));

tempString = new String("angul arVelocity.y");
i f(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
i nertiaADU. put (tenmpString, new Doubl ePreci sion(angy));
else if(inertiaADU. get(tenpString) instanceof SinglePrecision)
i nertiaADU. put (tenpString, new SinglePrecision((float)angy));

tempString = new String("angul arVelocity.z");

i f(inertiaADU. get(tenpString) instanceof Doubl ePrecision)
i nertiaADU. put (tenpString, new Doubl ePreci sion(angz));

else if(inertiaADU. get(tenpString) instanceof SinglePrecision)
i nertiaADU. put (tenpString, new Singl ePrecision((float)angZz));

Y/ end try
catch(Fi el dTypeException fte)

Systemerr.printin("Field Type not found: " + fte);

}// end catch
cat ch(Fi el dNot FoundExcepti on fnfe)

{

Systemerr.printin("Field not found: " + fnfe);

85

}// end catch

/1 Systemout.println("Send side ---
InertiaProtocol :entityChanged():inertiaADU == \n" + inertiaADU);

/1 Serialize and send inertial data for the entity
/1 Serialize and send transformdata for the entity
byte[] data = serializeADU(inerti aADU);

Set distroSet = AOMgetAd M).getDistributionSet(e, this);

EntityDi spatcher. getEntityD spatcher().sendPacket(this,
e.getlD(),
di stroSet,
dat a) ;

C. DBP INERTIA HIGH RESOLUTION SOURCE DOCUMENT

<?xm version="1.0"?>
<! DOCTYPE Pr ot ocol SYSTEM "./Dynani cBehavi or Protocol . dtd">

<Prot ocol nane="1NERTI AL_PACKET"
mar ker Posi ti on="0"
mar ker Type="or g. web3d. vrt p. dat at ypes. Unsi gnedByt e"
clientStub="http://some.url.conlbaz">

<Type name="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"

val ue="file://org. web3d. vrt p. dat at ypes. Doubl ePr eci si on" ></ Type>
<Type nane="org.web3d. vrtp. dat at ypes. Longl nt eger"

val ue="file://org. web3d. vrtp. dat at ypes. Longl nt eger " ></ Type>
<Type nanme="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"

val ue="file://org. web3d. vrtp. dat at ypes. Unsi gnedByt e" ></ Type>
<Type nane="or g. web3d. vrtp. dat at ypes. Si gnedl nt eger "

val ue="file://org. web3d. vrt p. dat at ypes. Si gnedl nt eger " ></ Type>

<Channel multicast Address="225.4. 3. 122"
mul ticastPort = "1717" />

<Packet Header nanme="RTP">
<Fi el d nane="sequence"
t ype="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"
initialVal ue="0"/>
<Fi el d nanme="ti nest anp"
t ype="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initialVal ue="0"/>
</ Packet Header >
<ADU nane="| PPPDU" mar ker Val ue="99" >
<Fi el d nane="rmar ker Val ue"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialVal ue="99"/>

<Structure nane="packet Resol ution" initialValue = "2">

86

<Fi el d nanme="resol uti on"

type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"

initial Val ue="2"/>
</ Structure>
<Structure nane="Position">

<Fi el d nane="x

type="org. web3d. vrt p. dat at ypes.

initial val ue="0.0"/>

<Fi el d name="y"

type="org. web3d. vrt p. dat at ypes.

initial vVal ue="0.0"/>

<Fi el d name="2z"

type="org. web3d. vrt p. dat at ypes.

initial val ue="0.0"/>
</ Structure>
<Structure name ="posRef Ti ne">

<Fi el d name="posTi ne"

Doubl ePr eci si on"

Doubl ePr eci si on"

Doubl ePr eci si on"

type="org. web3d. vrt p. dat at ypes. Longl nt eger "

initialVvalue="0"/>

</ Structure>

<Structure nanme ="or Ref Ti ne">

<Fi el d nanme="or Ti me"

type="org. web3d. vrt p. dat at ypes. Longl nt eger "

initialValue="0"/>
</ Structure>
<Structure nanme="orientation">

<Fi el d nane="or 1"

type="org. web3d. vrt p. dat at ypes.

initialVval ue="0.0"/>

<Fi el d nane="or 2"

type="org. web3d. vrt p. dat at ypes.

initialval ue="0.0"/>

<Fi el d nane="or 3"

type="org. web3d. vrt p. dat at ypes.

initial Val ue="0.0"/>

<Fi el d name="or 4"

type="org. web3d. vrt p. dat at ypes.

initial Val ue="0.0"/>
</ Structure>
<Structure name="|inear Vel ocity">

<Fi el d nane="x

type="org. web3d. vrt p. dat at ypes.

initialVvalue="0.0"/>

87

Doubl ePr eci si on"

Doubl ePr eci si on"

Doubl ePr eci si on"

Doubl ePr eci si on"

Doubl ePr eci si on"

<Fi el d name="y"

type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial Val ue="0.0"/>

<Fi el d nane="2z"

type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial val ue="0.0"/>

</ Structure>

<Structure name="angul ar Vel oci ty">

<Fi el d nanme="x"

type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initialValue="0.0"/>

<Fi el d name="y"

type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial val ue="0.0"/>

<Fi el d nane="2z"

type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
i nitial Val ue="0.0"/>

</ Structure>

</ ADU>

</ Pr ot ocol >

D. DBP INERTIA LOW RESOLUTION SOURCE DOCUMENT

<?xm version="1.0"7?>

<! DOCTYPE Pr ot ocol SYSTEM "./ Dynam cBehavi or Prot ocol . dt d" >

<Pr ot oco

nanme="1 NERTI| AL_PACKET"

mar ker Posi ti on="0"

mar ker Type="or g. web3d. vrt p. dat at ypes. Unsi gnedByt e"
clientStub="http://some.url.conl baz">

<Type nane="org. web3d. vrt p. dat at ypes. Si ngl ePreci si on"
value="file://org.web3d. vrtp. dat at ypes. Si ngl ePr eci si on"></ Type>
<Type name="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"

val ue="file://org. web3d. vrtp. dat at ypes. Unsi gnedByt e" ></ Type>
<Type nane="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"

val ue="file://org. web3d. vrt p. dat at ypes. Si gnedl nt eger " ></ Type>
<Type name="org. web3d. vrtp. dat at ypes. Unsi gnedl nt eger"”
value="file://org. web3d. vrt p. dat at ypes. Unsi gnedl nt eger " ></ Type>

<Channe

mul ti cast Address="225. 4. 3. 122"

mul ticastPort = "1717" />

<Packet Header nanme="RTP">

<Fi el d name="sequence"

t ype="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initial Val ue="0"/>

<Fi el d nane="ti nest anp”
t ype="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initialval ue="0"/>

88

</ Packet Header >
<ADU nane="| PPPDU"' mar ker Val ue="99" >

<Fi el d nane="nmar ker Val ue"

type="org. webh3d. vrt p. dat at ypes. Unsi gnedByt e"
initial Val ue="99"/>

<Structure nane="packet Resol ution" initialValue = "1">

<Fi el d name="resol uti on"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialval ue="1"/>

</ Structure>
<Structure nane="Position">

<Fi el d name="x"

type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initial val ue="0.0"/>

<Field name="y"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initialValue="0.0"/>

<Fi el d name="2z"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initial Vval ue="0.0"/>

</ Structure>
<Structure name ="posRef Ti ne">
<Fi el d name="posTi ne"
type="org. web3d. vrt p. dat at ypes. Unsi gnedl nt eger"
initial Vval ue="0"/>

</ Structure>

<Structure nane ="or Ref Ti ne">
<Fi el d nanme="or Ti me"

type="org. web3d. vrt p. dat at ypes. Unsi gnedl nt eger"
initial Val ue="0"/>

</ Structure>
<Structure name="orientation">
<Fi el d nanme="or 1"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initialVval ue="0.0"/>
<Fi el d nane="or 2"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initialValue="0.0"/>

<Fi el d nanme="or 3"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initial Vval ue="0.0"/>

<Fi el d name="or 4"

89

type="org. web3d. vrt p. dat at ypes. Si
initial val ue="0.0"/>

ngl ePreci si on

</ Structure>
<Structure name="linear Vel ocity">
<Fi el d name="x"

type="org. web3d. vrt p. dat at ypes. Si
initial val ue="0.0"/>

ngl ePr eci si on”

<Fi el d name="y"
type="org. web3d. vrt p. dat at ypes. Si
initial Val ue="0.0"/>

ngl ePr eci si on"

<Fi el d name="2z"
type="org. web3d. vrtp. dat at ypes. S
initialVal ue="0.0"/>

ngl ePr eci si on"

</ Structure>
<Structure nanme="angul ar Vel ocity">
<Fi el d name="x"

type="org. web3d. vrt p. dat at ypes. Si
initialValue="0.0"/>

ngl ePr eci si on”

<Field name="y"
type="org. web3d. vrt p. dat at ypes. Si
initial Vval ue="0.0"/>

ngl ePr eci si on”

<Field name="z
type="org. web3d. vrt p. dat at ypes. Si
initial Val ue="0.0"/>

ngl ePr eci si on"

</ Structure>
</ ADU>

</ Pr ot ocol >

E. SUMMARY
The source code and source documents presented in this appendix work together

to provide both a high and low resolution capability for the DBP inertia protocol.

90

THISPAGE INTENTIONALLY LEFT BLANK

91

APPENDIX C

A. INTRODUCTION
This appendix provides the Java and XML source code for the DBP Animation

protocol.

B. DBP ANIMATION JAVA SOURCE CODE

package org. npsnet.v.test.dabp. dbpfoundati on. dbputil;
inport java.io.*;

i mport java.net.*;

inmport java.util.*;

inmport java.util.Vector.*;

i mport javax.vecnath. *;

import javax.nedia.j3d.*;

inmport java.lang.*;

i mport org.npsnet.v.sys.*;

i nport org.npsnet.v.net.*;

i mport org.npsnet.v.test.dabp. dbpfoundation. *;

i mport org.npsnet.v.test.dabp. dbpfoundati on. dbputil.*;
i mport org.web3d. vrtp.dabp.*;

i mport org.web3d. vrtp. dat at ypes. *;

/**

* A protocol for transmitting information about sinple, independent
* animations with integer identifiers.

*

* @uthor Bill Fischer
*/

public cl ass DBPAni mati onProt ocol extends org.npsnet.v.sys. Protocol
i mpl emrent s Serializabl e

{

/**
* The class's version string.
*/
private static final String classVersion = "$Revision: 1.3 $";

/**
* The known | ocation of this class.
*/
private static final String classCodebaseString =
"http://honer.cs.nps.navy.nil/renmote/";

/**

* The singleton instance of this class.

*/

private static DBPAni mati onProtocol ani mationProtocol;

/**

* The known | ocation of this class.

*/

private static final String PROTO URL =
“"http://honer.cs.nps.navy.nil/renmote/";

/**
* The URL to the XM file describing the packet |ayout
92

ayout

ot oc

*/
String hiXm File = new
String("c:/npsnetV/ org/ npsnet/v/test/dabp/ Ani mati onPr ot ocol Packet.xm ");

/**

* The URL to the XML file describing the H gh Resol uti on packet

*/
String loXm File = new
String("c:/npsnetV/ org/ npsnet/v/test/dabp/ Ani mati onProt ocol Packet.xm ");

/**
* DABP protocols for high resolution
*/
private org.web3d. vrtp. dabp. Prot ocol hi ResDabpPr ot ocol
org. web3d. vrt p. dabp. Prot ocol (hi Xm Fi |l e);

new

/**
* DABP protocols for high resolution
*/
private org.web3d. vrtp. dabp. Prot ocol | oResDabpPr ot ocol
org. web3d. vrt p. dabp. Prot ocol (|1 oXm Fi |l e);

new

/**
* Returns this class's version string.
*/
public String getd assVersion() {
return cl assVersion;
}

/**
* Returns this class's codebase.
*/
public URL getd assCodebase() {
try { return new URL(cl assCodebaseString); }
cat ch(Mal f or mredURLException e) { return null; }
}

/**
* Returns the singleton instance of <code>Ani nati onProt ocol </ code>.
*/
public static DBPAni mati onProtocol getlnstance() ({
i f(ani mati onProtocol !=null) return ani mati onProtocol ;
el se {
try {
org. npsnet.v.sys. Protocol tmpProt =
get Si ngl eton("org. npsnet. v. test. dabp. dbpfoundati on. dbputi | . DBPAni nati onPr

ol ", cl assVersion);

if(tmpProt == null)
ani mati onProt ocol = new DBPAni mati onProt ocol ();
el se
ani mati onProtocol = (DBPAni mati onProt ocol)t npProt;

cat ch(| DServer Exception ise) {
System out. println(ise);
Systemexit(1);

}

return ani mati onProtocol ;

/**

93

Constructor; takes a few paraneters, which allow us
to operate in the world. <p>

Note that this constructor is for use with new EntityMasters--
We create a new entity and send out information on it. The
creation of the entity registers a newentity ID and new

E I B R

protocol | Ds

changes

al |

t hose

position. x

* to go along with it.<p>

*

* @aram pEntity entity that we update

*/
publ i c DBPAni mati onProtocol () throws | DServer Exception
{

/1 A new instance requires a new I D

super (" DBPAni mat i onProt ocol ", true);
}
/**
* constructor. Note that this constructor is for use with
* things we have discovered fromthe net. we get in a new
* message with an existing ID. That neans we don't have to
* ook up the ID on the |IDServer.<p>
*
* @aramplD id of the protocol, gleaned fromnetwork traffic
*

publ i ¢ DBPAni mati onProt ocol (I ong pI D) throws |DServerException

{
super (pl D, | DCache. get| DCache(). get NameFor | D(pl D)) ;

* This receives a packet fromthe entity and serializes it, ie,

* all the data fields into a byte array that we can send across t he

* network. ADU is sonme nom nal superclass from DABP that subsunes

* packets.
*/
public byte[] serializeADU(Cbject pPacket Dat a)
{
byt e serializedData[] = null;
ADUDat a ani mati onADU = nul | ;

ani mat i onADU = (ADUDat a) pPacket Dat a;

Byt eArr ayQut put St ream oSt ream = new Byt eArrayQut put Streanm();
Dat aQut put St r eam dos = new Dat aCut put Strean{ oSt reamn ;

ani mat i onADU. seri al i ze(dos);
serializedData = oStreamtoByteArray();

return serializedDat a;

}
/'k*

* Receives a packet fromthe EntityD spatcher (or whatever.) The
* data we get in is just an array of bytes--we have to interpret

* pbytes so that we can do something with them This consists of two

* things: determ ng syntax, so we can retrieve the field naned
* "position.x"; and determ ning semantics, so we know that

* refers to the location of the entity in 3-space. W instantiate
* an ADUDat a packet, lay it out in the format described by the

94

* protocol's XM. document, and fill in the packet's fields fromthe
* incom ng byte stream dat a.

*/
public void receivePacket (byte[] pData, NetworkAware entity)
{
Byt eArrayl nput St ream bai s = new Byt eArrayl nput St ream(pDat a) ;

/1 Temporary workaround; prevents EntityMasters from bei ng
/1 nodified remotely

if(entity instanceof EntityMaster) return;

if(entity instanceof DBPAni nmat edMaster) return;

/1 W only get packets of one type, so we don't need to check
/1 on fornmat beforehand (fanous |ast words).

ADUDat a packet = null;

packet = hi ResDabpProtocol . bi naryDat aToADU(pDat a); //bi naryDat aToADU
/1 sone temporary objects & variabl es
bool ean ani m sLoopi ng = fal se;
long aninStartTine = 0;
bool ean | owResPacket = fal se;

try

{
i f(((UnsignedByte)(packet. get("markerValue"))).byteVal ue() == 96)
{

i f(((UnsignedByte) (packet. get("packet Resol ution.resolution"))).byteValue() ==

1

{ packet = | oResDabpPr ot ocol . bi naryDat aToADU(pDat a) ;
/1 bi nar yDat aToADU

Y/ end if

/'l some tenporary variabl es
byt e tenmpLoopi ng = O;

t enpLoopi ng =
(byte) (((PrimtiveNunber)packet. get("ani mati onLoopi ng. | ooping")).byteValu
e());
PrimtiveNunber startTimePrim=
((PrimtiveNunber)packet.get("aninStartTime.time"));
i f(startTimePriminstanceof Longlnteger)
aninStartTime = (long)(startTinePriml ongVal ue());
else if(startTimePriminstanceof Unsignedlnteger)
{
I ong sysTine = SystemcurrentTimeMI1is();
I ong tinmeMask = Oxffffffff00000000l ;
sysTime = sysTinme & tinmeMask;
long tenplnt = startTimePrimlongVal ue();
aninBtartTine = (sysTime | tenplnt);
}//end else if
ani m sLoopi ng = tenpLooping == 1 ? true : false;
/1 System out. println("Receive side --
Ani mat i onPr ot ocol : recei vePacket () : packet == "+ packet);
doubl e one = 1;
((DBPANni mat ed)entity).setAnimation((int)(entity.getl X)),
ani m sLoopi ng, ani nStartTi me, one);
Y/ end if
el se

95

{ Systemerr.println("Wong marker type (not 96)");
}/ 1 end el se
Y1 end try
cat ch(Fi el dNot FoundExcepti on fnfe)
{ Systemerr.printin("Field not found! " + fnfe);
}/1 end catch
return;

}

/**

* | nvoked when an entity is nodified.

*/

public void entityChanged(Entity e, Object info)

i f(e instanceof DBPAni mat edGhost) return;

ADUDat a ani mat edADU = nul | ;
ani mat edADU = new ADUDat a(hew
ADU(hi ResDabpPr ot ocol . get SchemaNamed(" ANPPPDU"))) ;

if(resolution ==
{ ani mat edADU = new ADUDat a(nhew

ADU(| oResDabpPr ot ocol . get SchemaNaned(" ANPPPDU"))) ;
Y/ end if

bool ean ani m sLoopi ng = ((DBPAni mat ed) e) . get Ani m sLoopi ng() ;
| ong aninStartTine = ((DBPAni mated)e).get AninStart Ti me();
byt e ani mLoopi ng = (byte)(ani m sLooping == true ? 1 : 0);

try

{
/1 1 oad the ADUDat a packet
ani mat edADU. put (" packet Resol uti on. resol ution", new
Unsi gnedByt e(resol ution));

String tenpString = new String("ani mati onLoopi ng. | oopi ng");

i f (ani mat edADU. get (tenpString) instanceof UnsignedByte)
ani mat edADU. put (t enpString, new Unsi gnedByt e(ani nLoopi ng));
el se if(ani nat edADU. get (tenpString) instanceof UnsignedShort)
ani mat edADU. put (tenmpString, new
Unsi gnedShort ((short) ani m_Loopi ng)) ;

tempString = new String("aninStartTinme.time");
i f (ani mat edADU. get (tenpString) instanceof Longlnteger)
ani nat edADU. put (t empStri ng, new Longl nteger (ani nStart Ti ne));
el se i f(ani mat edADU. get (tenpString) instanceof Unsignedl nteger)
{
long sysTine = SystemcurrentTimeM I 1lis();
sysTime = sysTime & 0x00000000ffffffffl;
int tenplnt = (int)sysTine,;
Unsi gnedl nt eger uslntTime = new Unsi gnedl nteger (tenplnt);
ani mat edADU. put (tenpString, uslntTinme);
Y}/ end else if
Y}/ end try
cat ch(Fi el dTypeException fte)
{
Systemerr.println("Field Type not found: " + fte);
}/1 end catch
cat ch(Fi el dNot FoundExcepti on fnfe)

Systemerr.printin("Field not found: " + fnfe);
}// end catch

96

/1 Systemout.println("Send side ---
Ani mat i onPr ot ocol : entityChanged(): ani mat edADU == \n" + ani nat edADU) ;

/1 Serialize and send animation data for the entity
byte[] data = serializeADU(ani mat edADU) ;

Set distroSet = AOMgetAO M).getDistributionSet(e, this);
EntityDi spat cher. get EntityDi spatcher().sendPacket(this,
e.getlD(),

di stroSet,
dat a);

}s

C. DBP ANIMATION HIGH RESOLUTION SOURCE DOCUMENT

<?xm version="1.0"?>
<! DOCTYPE Protocol SYSTEM "./Dynamni cBehavi or Prot ocol . dt d">

<Prot ocol nanme="AN MATI ON_STATE"
mar ker Posi ti on="0"
mar ker Type="or g. web3d. vrt p. dat at ypes. Unsi gnedByt e"
clientStub="http://sone.url.con baz">

<Type nane="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
val ue="file://org.web3d. vrtp. dat at ypes. Doubl ePr eci si on" ></ Type>

<Type name="org.web3d. vrtp. dat at ypes. Longl nt eger ™"
val ue="file://org.web3d. vrt p. dat at ypes. Longl nt eger " ></ Type>

<Type name="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
value="file://org. web3d. vrtp. dat at ypes. Unsi gnedByt e" ></ Type>

<Type nane="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"
val ue="file://org. web3d. vrt p. dat at ypes. Si gnedl nt eger " ></ Type>

<l-- <Channel nulticast Address="225.7.8.30"
mul ti castPort = "4070" /> -->

<Channel multicast Address="225.9.9. 127"
mul ticastPort = "1919" />

<Packet Header nane="RTP">
<Fi el d nane="sequence"
type="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"
initialValue="0"/>
<Fi el d nanme="ti nest anp"
type="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initialValue="0"/>
</ Packet Header >
<ADU nanme="ANPPPDU" mar ker Val ue="96">
<Fi el d name="nar ker Val ue"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialVval ue="96"/>

97

<Structure nane="packet Resol ution" initialValue = "2">
<Fi el d name="resol uti on"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialVal ue="2"/>
</ Structure>
<Structure nane ="ani mati onLoopi ng">
<Fi el d name="1 oopi ng"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialVal ue="0"/>
</ Structure>
<Structure nane ="ani nttartTi ne">
<Field name="ti nme"
type="org. web3d. vrt p. dat at ypes. Longl nt eger"
initial Val ue="0"/>
</ Structure>

</ ADU>

</ Pr ot ocol >

D. DBP ANIMATION LOW RESOLUTION SOURCE DOCUMENT

<?xm version="1.0"?>
<! DOCTYPE Protocol SYSTEM "./Dynami cBehavi or Prot ocol . dt d">
<Pr ot ocol nanme=" AN MATI ON_STATE"
mar ker Posi ti on="0"
mar ker Type="or g. web3d. vrt p. dat at ypes. Unsi gnedByt e"
clientStub="http://some.url.conlbaz">

<Type name="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
val ue="file://org.web3d. vrtp. dat at ypes. Doubl ePr eci si on" ></ Type>

<Type nane="or g. web3d. vrt p. dat at ypes. Longl nt eger "
val ue="file://org. web3d. vrtp. dat at ypes. Longl nt eger " ></ Type>

<Type name="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
val ue="file://org. web3d. vrtp. dat at ypes. Unsi gnedByt e" ></ Type>

<Type name="org.web3d. vrt p. dat at ypes. Si gnedl nt eger "
val ue="file://org. web3d. vrtp. dat at ypes. Si gnedl nt eger " ></ Type>

<Type nane="org.web3d. vrtp. dat at ypes. Unsi gnedl nt eger”
val ue="file://org.web3d. vrtp. dat at ypes. Unsi gnedl nt eger " ></ Type>

<l-- <Channel multicast Address="225.7.8.30"
mul ti castPort = "4070" /> -->

<Channel nulticast Address="225.9.9. 127"
mul ticastPort = "1919" />

<Packet Header nane="RTP">

98

<Fi el d name="sequence"
type="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initial Val ue="0"/>

<Fi el d nanme="ti nest anmp"
type="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"
initialValue="0"/>

</ Packet Header >

<ADU name="ANPPPDU"' mar ker Val ue="96">
<Fi el d nane="mar ker Val ue"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialVal ue="96"/>
<Structure nane="packet Resol ution" initialValue = "1">
<Fi el d name="resol uti on"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initial Val ue="1"/>
</ Structure>
<Structure name ="ani nmati onLoopi ng">
<Fi el d name="1 oopi ng"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialVal ue="0"/>
</ Structure>
<Structure nane ="aninftartTi ne">
<Field name="ti me"
type="org. web3d. vrt p. dat at ypes. Unsi gnedl nt eger"
initial Val ue="0"/>
</ Structure>

</ ADU>

</ Pr ot ocol >

E. SUMMARY

The source code and source documents presented in this appendix work together

to provide both a high and low resolution capability for the DBP animation protocol.

99

APPENDIX D

A. INTRODUCTION
This appendix provides the Java and XML source code for the DBP acceleration
protocol.

B. DBP ACCELERATION JAVA SOURCE CODE
package org. npsnet.v.test.dabp. dbpfoundati on. dbputil;

inmport java.io.*;

import java.net.*;

inmport java.util.*;
inmport java.util.Vector.*;
i mport javax.vecnath.*;
inmport javax.nedia.j3d.*;
inmport java.lang.*;

i mport org.npsnet.v.sys.*;

i mport org.npsnet.v.net.*;

i mport org.npsnet.v.test.dabp. dbpfoundation. *;

import org.npsnet.v.test.dabp. dbpfoundation. dbputil.*;
import org.web3d. vrtp. dabp. *;

i mport org.web3d. vrtp. datatypes. *;

/**

* A protocol that passes infornmation about |inear and angul ar

* accel eration.
*

* @uthor Bill Fischer
*/

public class DBPAccel erationProtocol extends org.npsnet.v.sys. Protocol
i mpl ements Serializable

{

/**

* The class's version string.

*/

private static final String classVersion = "$Revision: 1.2 $";

/**
* The known | ocation of this class.
*/
private static final String classCodebaseString =
"http://homer.cs.nps.navy.ml/renmote/";

/**

* The singleton instance of this class.

*/

private static DBPAccel erati onProtocol accel erationProtocol;

/**

* The known | ocation of this class.

*/

private static final String PROTO URL =
"http://homer.cs.nps.navy.nml/renote/";

/'k*

100

* The URL to the XML file describing the H gh Resol uti on packet

| ayout
*/
String hiXm File = new
String("c:/npsnetV/ org/ npsnet/v/test/dabp/ Accel erati onProt ocol Packet . xm "
);
/**
* The URL to the XML file describing the H gh Resol ution packet
| ayout
*/
String loXm File = new
String("c:/npsnetV/org/ npsnet/v/test/dabp/ Accel erati onPr ot ocol Packet LoRes
xm ")
/**
* DABP protocols for high resolution
*/
private org.web3d. vrtp. dabp. Protocol hi ResDabpProtocol = new
org. web3d. vrt p. dabp. Prot ocol (hi Xm Fil e);
/**
* DABP protocols for high resolution
*/
private org.web3d. vrtp. dabp. Prot ocol | oResDabpProtocol = new

org. web3d. vrt p. dabp. Prot ocol (|1 oXm Fi |l e);

/**
* Returns this class's version string.
*/
public String getd assVersion() {
return cl assVersion;
}

/**

* Returns this class's codebase.

*/

public URL getd assCodebase() {
try { return new URL(cl assCodebaseString); }
cat ch(Mal f or mredURLException e) { return null; }

}
/**
* Returns the singleton instance of
<code>Accel er ati onProt ocol </ code>.
*/
public static DBPAccel erationProtocol getlnstance() {
i f(accelerationProtocol!=null) return accel erati onProtocol;
el se {
try {
org.npsnet.v.sys. Protocol tnpProt =
get Si ngl eton("org. npsnet. v. test. dabp. dbpf oundati on. dbputil . DBPAccel erati onProto

col ", cl assVersion);

if(tmpProt == null)
accel erati onProtocol = new DBPAccel erati onProtocol ();
el se
accel erati onProt ocol
(DBPAccel erati onProtocol)t mpProt;

catch(| DServer Exception ise) {
System out. println(ise);
System exit(1);

101

}

return accel erati onProtocol;

*

* Constructor; takes a few paraneters, which allow us

* to operate in the world. <p>

* Note that this constructor is for use with new EntityMasters--
* W create a new entity and send out information on it. The

* creation of the entity registers a newentity ID and new

protocol | Ds
* to go along with it.<p>
*
* @arampEntity entity that we update
*/
publ i ¢ DBPAccel erati onProtocol () throws | DServer Exception
{
/1 A new instance requires a new I D
super (" DBPAccel erati onProtocol ", true);
}

*

constructor. Note that this constructor is for use with
t hi ngs we have di scovered fromthe net. we get in a new
message with an existing ID. That neans we don't have to
| ook up the ID on the | DServer.<p>

@arampl D id of the protocol, gleaned fromnetwork traffic

* % F ok %k % K

publ i c DBPAccel erati onProtocol (1 ong pl D) throws |DServerException
{

}

/**

* This receives a packet fromthe entity and serializes it, ie,

super (pl D, | DCache. get| DCache(). get NaneFor| D(pl D)) ;

changes
* all the data fields into a byte array that we can send across the
* network. ADU is sone nom nal superclass from DABP that subsunes
al |
* packets.
*/
public byte[] serializeADU(Cbject pPacket Data)
{
byte serializedData[] = null;
ADUDat a accel erati onADU = nul | ;
accel erati onADU = (ADUDat a) pPacket Dat a;
Byt eArr ayQut put St r eam oSt ream = new Byt eArrayQut put Strean() ;
Dat aQut put St ream dos = new Dat aCut put Strean{ oSt reamn;
accel erati onADU. seri al i ze(dos);
serializedData = oStreamtoByteArray();
return serializedDat a;
}
/**
* Receives a packet fromthe EntityD spatcher (or whatever.) The
* data we get in is just an array of bytes--we have to interpret
t hose

* pytes so that we can do sonething with them This consists of two

102

position. x

things: determ ng syntax, so we can retrieve the field naned
"position.x"; and determ ning semantics, so we know that

E

refers to the location of the entity in 3-space. W instantiate
an ADUDat a packet, lay it out in the format described by the
protocol's XML document, and fill in the packet's fields fromthe
i ncom ng byte stream data.

/

public void recei vePacket (byte[] pData, NetworkAware entity)

{
Byt eArrayl nput Stream bai s = new Byt eArrayl nput Strean{ pDat a) ;

* %k F ok F

/1 Tenporary workaround; prevents EntityMasters from bei ng
/1 nodified renotely

if(entity instanceof EntityMaster) return;

if(entity instanceof DBPAccel erabl eMaster) return;

/1 W only get packets of one type, so we don't need to check
/1 on format beforehand (fanmous |ast words).

ADUDat a packet = null;

packet = hi ResDabpProtocol . bi naryDat aToADU(pDat a); //bi nar yDat aToADU

/1 some tenporary objects & variables
Vector 3d | i nearAccel eration = null;
Vect or 3d angul ar Accel eration = null;

try

{
i f(((UnsignedByte)(packet.get("nmarkerValue"))).byteValue() == 97)
{

i f(((UnsignedByte)(packet. get("packet Resolution.resolution"))).byteValue() ==

1)

{ packet = | oResDabpPr ot ocol . bi naryDat aToADU(pDat a) ;

/1 bi nar yDat aToADU

t he

to

1

1

Y/ end if

/] some tenporary variabl es
double linX, linY, linZ angX, ang¥Y, angZ

/1 fill the blank ADUData packet with the corresponding fields from

/1 incom ng byte stream Try separately in case |ater we decide
11 only send a partial packet (eg linear and not angul ar)
try{
linX =
(doubl e) (((PrimtiveNunber)packet.get("linearAccel eration.lax")).doubl eVal ue())
linY =
(doubl e) (((PrimtiveNunber) packet.get("linearAccel eration.lay")).doubl eVal ue())
linz =
(doubl e) (((PrimtiveNunber) packet.get("linearAccel eration.laz")).doubl eVal ue())
’ I i near Accel eration = new Vector3d(linX, linY, linZ);
Y/ end try
cat ch(Fi el dNot FoundException fnfe)
{ Systemerr.printin("Field not found! " + fnfe);

}/1 end catch

103

try
angX =
(doubl e) (((PrimtiveNunber) packet. get ("angul ar Accel erati on. aax")). doubl eVal ue()

angY =
(doubl e) (((PrimtiveNunber) packet. get ("angul ar Accel erati on. aay")) . doubl eVal ue()
)

angZ =
(doubl e) (((PrimtiveNunber) packet. get ("angul ar Accel erati on.aaz")) . doubl eVal ue()

angul ar Accel erati on = new Vector3d(angX, angY, angZ);
Y}/ end try
cat ch(Fi el dNot FoundException fnfe)
{ Systemerr.printin("Field not found! " + fnfe);
}// end catch

I System out. println("Receive side --
Transf or mPr ot ocol : recei vePacket () : packet == "+ packet);

i f(linearAcceleration != null)

((DBPAccel erabl e)entity). setLinearAccel eration(linearAccel eration);
Y/ end if

i f (angul ar Accel eration !'= null)

((DBPAccel erabl e)entity). set Angul ar Accel erati on(angul ar Accel erati on);
Y/ end if

Y/ end if

el se

{ Systemerr.println("Wong marker type (not 97)");
}/1 end el se

Y1 end try
cat ch(Fi el dNot FoundException fnfe)
{ Systemerr.printin("Field not found! " + fnfe);

}// end catch

return;
}
/**
* I nvoked when an entity is nmodified. The entity's inertia
information
* is | oaded into an ADUData packet, which is then serialized and
passed
* to the Entity Master.
*/
public void entityChanged(Entity e, Object info)

i f(e instanceof DBPAccel erabl eGhost) return;

ADUDat a accel erati onADU = nul |
accel erati onADU = new ADUDat a(new
ADU(hi ResDabpPr ot ocol . get SchemaNamed(" ACPPPDU"))) ;

if(resolution == 1)
{ accel erati onADU = new ADUDat a(hew

ADU(| oResDabpPr ot ocol . get SchemaNaned(" ACPPPDU"))) ;
Y/ end if

/'l linear accel eration

104

doubl e[] linearAccel erationArray = new doubl e[3];

Vector3d |inearAccel erati on = new Vector3d();
((DBPAccel erabl e) e) . get Li near Accel eration(linearAccel eration);
I i near Accel eration. get (linearAccel erationArray);

doubl e linX = |linearAccel erati onArray[0];
doubl e linY = IlinearAccel erationArray[1];
doubl e linZ = |linearAccel erati onArray[2] ;

/1 angul ar accel eration
doubl e[] angul ar Accel erati onArray = new doubl e[3] ;

Vect or 3d angul ar Accel erati on = new Vector3d();
((DBPAccel er abl e) e) . get Angul ar Accel er ati on(angul ar Accel erati on);
angul ar Accel er ati on. get (angul ar Accel erati onArray);

doubl e angX = angul ar Accel erati onArray[0];
doubl e angY = angul ar Accel erati onArray[1];
doubl e angZ = angul ar Accel erati onArray|[2];
try

{
/1 1oad the ADUDat a packet
accel erati onADU. put (" packet Resol uti on. resol uti on", new

Unsi gnedByt e(resol ution));

Y1 end try

catch(Fi el dTypeException fte)

{ Systemerr.printin("Field Type not found: " + fte);

}/1 end catch

cat ch(Fi el dNot FoundException fnfe)

{ Systemerr.printin("Field not found: " + fnfe);

}/1 end catch

String tenpString = new String("linearAcceleration.lax");
/] doing this in pieces in case we |ater want to send one w t hout

t he ot her
try
{
i f(accel erati onADU. get (tenmpString) instanceof Doubl ePreci sion)
accel erati onADU. put (tenpStri ng, new Doubl ePrecision(linX));
el se if(accel erati onADU. get (tenpString) instanceof
Si ngl ePr eci si on)

Si

Si

Si

Si

Si

accel erati onADU. put (tenpStri ng, new
ngl ePrecision((float)linX));

tempString = new String("linearAcceleration.lay");
i f(accel erati onADU. get (tenpString) instanceof Doubl ePreci sion)
accel erati onADU. put (tenpString, new Doubl ePreci sion(linY));
el se if(accel erati onADU. get (tenpString) instanceof
ngl ePr eci si on)
accel erati onADU. put (tenpString, new
ngl ePrecision((float)linY));

tempString = new String("linearAcceleration.laz");
i f(accel erati onADU. get (tenpString) instanceof Doubl ePreci sion)
accel erati onADU. put (tenpStri ng, new Doubl ePreci sion(linz));
el se if(accel erati onADU. get (tenpString) instanceof
ngl ePr eci si on)
accel erati onADU. put (tenpStri ng, new
ngl ePrecision((float)linz));
Y}/ end try
cat ch(Fi el dTypeException fte)
{ Systemerr.println("Field Type not found: " + fte);

105

}// end catch
cat ch(Fi el dNot FoundException fnfe)
{ Systemerr.printin("Field not found: " + fnfe);
}// end catch

tempString = new String("angul ar Accel eration. aax");
try{
i f(accel erati onADU. get (tenpString) instanceof Doubl ePrecision)
accel erati onADU. put (tenpStri ng, new Doubl ePreci si on(angX));
el se if(accel erati onADU. get (tenpString) instanceof
Si ngl ePr eci si on)
accel erati onADU. put (tenmpStri ng, new
Si ngl ePreci sion((float)angX));

tempString = new String("angul ar Accel eration. aay");
i f(accel erati onADU. get (tenmpString) instanceof Doubl ePreci sion)
accel erati onADU. put (tenpString, new Doubl ePreci si on(angy));
el se if(accel erati onADU. get (tenpString) instanceof
Si ngl ePr eci si on)
accel erati onADU. put (tenpStri ng, new
Si ngl ePreci si on((fl oat)angy));

tempString = new String("angul ar Accel eration. aaz");
i f(accel erati onADU. get (tenpString) instanceof Doubl ePreci sion)
accel erati onADU. put (tenpString, new Doubl ePreci sion(angz));
el se if(accel erati onADU. get (tenpString) instanceof
Si ngl ePr eci si on)
accel erati onADU. put (tenpString, new
Si ngl ePreci si on((fl oat)angz));
Y/l end try
catch(Fi el dTypeException fte)
{ Systemerr.println("Field Type not found: " + fte);
}// end catch
cat ch(Fi el dNot FoundExcepti on fnfe)
{ Systemerr.printin("Field not found: " + fnfe);
}/1 end catch

/1 Systemout.println("Send side ---
Accel erati onProtocol : entityChanged(): accel erati onADU == \n" +
accel erati onADU) ; /[***x***x*x*xx%*838888888388888888

/1 Serialize and send inertial data for the entity

/1 Serialize and send transformdata for the entity

byte[] data = serializeADU(accel erati onADU);

Set distroSet = AOMgetAO M).getDistributionSet(e, this);
EntityDi spatcher.getEntityD spatcher().sendPacket(this,

e.getl (),
di stroSet,

dat a);
b
C.DBP ACCELERATION HIGH RESOLUTION SOURCE DOCUMENT
<?xm version="1.0"?>
<! DOCTYPE Pr ot ocol SYSTEM "./Dynani cBehavi or Protocol . dtd">
<Pr ot ocol nane=" ACCELERATI ON_STATE"
106

mar ker Posi ti on="0"
mar ker Type="or g. web3d. vrt p. dat at ypes. Unsi gnedByt e"
clientStub="http://some.url.conlbaz">

<Type name="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
val ue="file://org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"></ Type>

<Type name="ordg.web3d. vrt p. dat at ypes. Longl nt eger "
val ue="file://org. web3d. vrtp. dat at ypes. Longl nt eger " ></ Type>

<Type name="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
val ue="file://org. web3d. vrtp. dat at ypes. Unsi gnedByt e" ></ Type>

<Type nane="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
val ue="file://org. web3d. vrtp. dat at ypes. Si gnedl nt eger " ></ Type>

<Channel multicast Address="225.2.4.122"
mul ticastPort = "1818" />

<Packet Header nane="RTP">
<Fi el d nane="sequence"
type="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"
initialVvalue="0"/>
<Fi el d nanme="ti nest anp"
type="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initialValue="0"/>
</ Packet Header >
<ADU name="ACPPPDU" nar ker Val ue="97">
<I-- <Field name="marker Val ue"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialValue="97"/> -->
<Structure nane="packet Resol ution" initialValue = "2">
<Fi el d nane="resol uti on"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initial Val ue="2"/>
</ Structure>
<Structure nane="linear Accel erati on">
<Fi el d nanme="1 ax"
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initialValue="0.0"/>
<Fi el d nane="1ay"
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial Val ue="0.0"/>
<Fi el d nane="1az"
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial Val ue="0.0"/>

</ Structure>

<Structure nanme="angul ar Accel erati on">

107

<Fi el d nane="aax"
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"

initial Val ue="0.0"/>

<Fi el d nane="aay"
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial val ue="0.0"/>

<Fi el d nanme="aaz"

type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial val ue="0.0"/>

</ Structure>
</ ADU>

</ Pr ot ocol >

D. DBP ACCELERATION LOW RESOLUTION SOURCE DOCUMENT
<?xm version="1.0"?>
<! DOCTYPE Protocol SYSTEM "./Dynami cBehavi or Prot ocol . dt d">

<Prot ocol nane=" ACCELERATI ON_STATE"
mar ker Posi ti on="0"

mar ker Type="or g. web3d. vrt p. dat at ypes. Unsi gnedByt e"
clientStub="http://some.url.conl baz">

<Type name="org. web3d. vrtp. dat at ypes. Si ngl ePr eci si on"
val ue="file://org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"></ Type>

<Type name="org.web3d. vrt p. dat at ypes. Longl nt eger "
val ue="file://org. web3d. vrtp. dat at ypes. Longl nt eger " ></ Type>

<Type name="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
val ue="file://org. web3d. vrtp. dat at ypes. Unsi gnedByt e" ></ Type>

<Type nane="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"
val ue="file://org. web3d. vrtp. dat at ypes. Si gnedl nt eger " ></ Type>

<Channel multicast Address="225.2.4.122"
mul ticastPort = "1818" />

<Packet Header nane="RTP">
<Fi el d nane="sequence"
type="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"
initialVal ue="0"/>
<Fi el d nanme="ti nest anp"
type="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initialVal ue="0"/>
</ Packet Header >
<ADU nanme="ACPPPDU" nar ker Val ue="97">
<I-- <Field name="marker Val ue"

type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialValue="97"/> -->

108

<Structure nane="packet Resol ution" initialValue = "2">
<Fi el d nanme="resol uti on"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialVvalue="1"/>
</ Structure>
<Structure nane="linear Accel erati on">
<Fi el d nanme="1ax"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initialValue="0.0"/>
<Fi el d nanme="1ay"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initialValue="0.0"/>
<Fi el d nanme="1az"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initialValue="0.0"/>
</ Structure>
<Structure name="angul ar Accel erati on">
<Fi el d nane="aax"
type="org. web3d. vrt p. dat at ypes. Si ngl ePreci si on"
initial Val ue="0.0"/>
<Fi el d nane="aay"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initialValue="0.0"/>
<Fi el d nane="aaz"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initialValue="0.0"/>
</ Structure>
</ ADU>
</ Prot ocol >

E. SUMMARY

The source code and source documents presented in this appendix work together

to provide both a high and low resolution capability for the DBP acceleration protocol.

109

APPENDIX E

A. INTRODUCTION

This appendix provides the Java and XML source code for the DBP articulation
protocol.

B. DBP ARTICULATION JAVA SOURCE CODE
package org. npsnet.v.test.dabp. dbpfoundati on. dbputil;

inmport java.io.*;

import java.net.*;

inmport java.util.*;

inmport java.util.Vector.*;
i mport javax.vecnath.*;
inmport javax.nedia.j3d.*;
inmport java.lang.*;

i nport org.npsnet.v.sys.*;

i nport org.npsnet.v.net.*;

i mport org.npsnet.v.test.dabp. dbpfoundation. *;
i mport org.web3d. vrtp. dabp. *;

i mport org.web3d. vrtp. dat at ypes. *;

/**
* A protocol for transmitting information about the joint positions
* in articulated entities. Each joint uses one protocol!

*

* @uthor Bill Fischer

*/
public class DBPArticul ati onProtocol extends org.npsnet.v.sys. Protocol
i mpl emrent s Serializabl e
{
/**
* The class's version string.
*/
private static final String classVersion = "$Revision: 1.2 $";
/**
* The known | ocation of this class.
*/

private static final String classCodebaseString =
"http://honer.cs.nps.navy.nil/renmote/";

/**

* The singleton instance of this class.

*/

private static DBPArticul ati onProtocol articul ati onProtocol;

/**

* The known | ocation of this class.

*/

private static final String PROTO URL =
“"http://honer.cs.nps.navy.nil/renmote/";

/**

110

* The URL to the XML file describing the H gh Resol uti on packet

| ayout
*/
String hiXm File = new
String("c:/npsnetV/ org/npsnet/v/test/dabp/Articul ati onProtocol Packet.xm "
)
/**
* The URL to the XML file describing the H gh Resol uti on packet
| ayout

*/
String loXm File = new
String("c:/npsnetV/ org/npsnet/v/test/dabp/ Articul ati onProt ocol Packet LoRes
xmt);

/**
* DABP protocols for high resolution
*/
private org.web3d. vrtp. dabp. Prot ocol hi ResDabpProtocol = new
org. web3d. vrt p. dabp. Prot ocol (hi Xm Fi |l e);
/**
* DABP protocols for high resolution
*/
private org.web3d. vrtp. dabp. Prot ocol | oResDabpProtocol = new

org. web3d. vrt p. dabp. Prot ocol (|1 oXm Fi |l e);

/**

* The index nunber of the joint this protocol is for
*/

private int jointNunber = O;

/**
* Returns this class's version string.
*/
public String getd assVersion() {
return cl assVersion;
}

/**
* Returns this class's codebase.
*/
public URL getd assCodebase() {
try { return new URL(cl assCodebaseString); }
cat ch(Mal f or mredURLException e) { return null; }
}

/**
* Returns the singleton instance of
<code>Arti cul ati onPr ot ocol </ code>.
*/
public static DBPArticul ati onProtocol getlnstance() {
if(articulationProtocol!=null) return articul ati onProtocol;
el se {
try {
org.npsnet.v.sys. Protocol tnpProt =
get Si ngl eton("org. npsnet. v. test. dabp. dbpf oundati on. dbputil.DBPArticulatio
nProto col ", cl assVersion);

i f(tnpProt == null)
articul ati onProtocol = new DBPArticul ati onProtocol ();
el se

111

articul ati onProtocol =

(DBPArti cul ati onProtocol)t npProt;

catch(| DServer Exception ise) {
System out. println(ise);
Systemexit(1);

}
return articul ati onProtocol;
}
}
/**
* Constructor; takes a few paraneters, which all ow us
* to operate in the world. <p>
*
* Note that this constructor is for use with new EntityMasters--
* W create a new entity and send out information on it. The
* creation of the entity registers a newentity ID and new
protocol | Ds

changes

* to go along with it.<p>

* @aram pEntity entity that we update

*/

public DBPArticul ati onProtocol () throws | DServer Exception

/1 A new instance requires a new I D

super ("dbpArticul ati onProtocol ", true);
}
/**
* constructor. Note that this constructor is for use with
* things we have discovered fromthe net. we get in a new
* message with an existing ID. That neans we don't have to
* ook up the ID on the |IDServer.<p>
*
* @aramplD id of the protocol, gleaned fromnetwork traffic
*/

public DBPArticul ati onProtocol (1 ong pl D) throws |DServer Exception

{
super (pl D, | DCache. get| DCache() . get NaneFor| D(pl D)) ;

* This receives a packet fromthe entity and serializes it, ie,

* all the data fields into a byte array that we can send across the

* network. ADU is some nom nal superclass from DABP that subsumes all

* packets.
*/

public byte[] serializeADU Cbject pPacket Dat a)
{

byte serializedData[] = null;
ADUDat a articul ati onADU = nul | ;
articul ati onADU = (ADUDat a) pPacket Dat a;

Byt eArrayQut put St r eam oSt ream = new Byt eArrayQut put Strean();
Dat aCut put Stream dos = new Dat aQut put St rean{ oSt rean) ;

articul ati onADU. seri al i ze(dos);

112

t hose

position. x

/*
*
*

*

* % ok % F

serializedData = oStreamtoByteArray();
return serializedDat a;

*

Recei ves a packet fromthe EntityDi spatcher (or whatever.) The
data we get in is just an array of bytes--we have to interpret

bytes so that we can do sonething with them This consists of two
things: deterning syntax, so we can retrieve the field naned
"position.x"; and determ ning semantics, so we know that
refers to the location of the entity in 3-space. W instantiate
an ADUDat a packet, lay it out in the format described by the
protocol's XML document, and fill in the packet's fields fromthe
i ncom ng byte stream data.
/

public void recei vePacket (byte[] pData, NetworkAware entity)

{

Byt eArrayl nput St ream bai s = new Byt eArrayl nput St ream pDat a) ;
/1 Tenporary workaround; prevents EntityMasters from bei ng

/1 nodified remotely

if(entity instanceof EntityMaster) return;

if

/11
11

(entity instanceof DBPArticul atedMaster) return;

We only get packets of one type, so we don't need to check
on format beforehand (fanous |ast words).

ADUDat a packet = null;
packet = hi ResDabpProtocol . bi naryDat aToADU(pDat a); //bi naryDat aToADU

/1 some tenporary objects & variables

Quat4d jointOrientations = null;

try

{ .

i f(((UnsignedByte)(packet.get("nmarkerValue"))).byteVal ue() == 95)

{

i f(((UnsignedByte)(packet. get("packet Resol ution.resolution"))).byteValue() ==

1)

{ packet = | oResDabpPr ot ocol . bi naryDat aToADU(pDat a) ;

/1 bi nar yDat aToADU

t he

Y/ end if

/] some tenporary variabl es
doubl e jox, joy, joz, jow

/1 fill the blank ADUData packet with the corresponding fields from
/1 i ncom ng byte stream

jox =

(doubl e) (((PrimtiveNunber) packet.get("orientation.or1")).doubl eVal ue());

joy =

(doubl e) (((PrimtiveNunber) packet.get("orientation.or2")).doubleVal ue());

joz =

(doubl e) (((Pr_i m ti veNunber) packet. get("orientation.or3")).doubl eval ue());

jow =

(doubl e) (((PrimtiveNunber)packet.get("orientation. or4")).doubl eval ue());

113

jointOrientati ons = new Quat4d(j ox, joy, joz, jow);

/1 System out. println("Receive side --
Transf or mPr ot ocol : recei vePacket () : packet == "+ packet);

((DBPArticul ated)entity).setJointOrientation(joi nt Nunber,
jointOrientations);
Y1 end if
el se
{ Systemerr.println("Wong marker type (not 99)");
}/1 end el se

Y1 end try
cat ch(Fi el dNot FoundExcepti on fnfe)
{
Systemerr.printin("Field not found! " + fnfe);

}// end catch

return;

/**
* | nvoked when an entity is nmodified. The entity's articulation

information
* is |oaded into an ADUDat a packet, which is then serialized and

passed
* to the Entity Master.
*/
public void entityChanged(Entity e, Object info)
{

i f(e instanceof DBPArti cul atedGhost) return;

ADUDat a articul ati onADU = nul | ;
articul ati onADU = new ADUDat a(new
ADU(hi ResDabpPr ot ocol . get SchemaNamed(" ARPPPDU"))) ;

if(resolution == 1)
{ articulationADU = new ADUDat a(new
ADU(| oResDabpPr ot ocol . get SchemaNamed(" ARPPPDU"))) ;

/] orientation
doubl e[] joi nt OpsArray = new doubl e[4];

Quat 4d j oi nt Ops = new Quat 4d();
((DBPArticul ated)e).getJointOrientation(jointOps, jointNunber);
j oi nt Ops. get (j oi nt OpsArray);

doubl e j ox
doubl e joy
doubl e joz
doubl e j ow

j oi nt OpsArray[0];
jointQpsArray[1];
j oi nt OpsArray|[2] ;
j oi nt OpsArray|[3];

try

{
/1 1oad the ADUDat a packet
articul ati onADU. put (" packet Resol ution.resol ution", new
Unsi gnedByt e(resol ution));

String tenpString = new String("jointOrientations. x");

if(articulati onADU. get (tenpString) instanceof Doubl ePreci sion)
articul ati onADU. put (tenmpString, new Doubl ePreci si on(jox));

114

el se if(articul ati onADU. get (tenpString) instanceof
Si ngl ePr eci si on)
articul ati onADU. put (tenpString, new
Si ngl ePrecision((float)jox));

tempString = new String("jointOrientations.y");
if(articulati onADU. get (tenpString) instanceof Doubl ePreci sion)
articul ati onADU. put (tenmpStri ng, new Doubl ePreci sion(joy));
el se if(articul ati onADU. get (tenpString) instanceof
Si ngl ePreci si on)
articul ati onADU. put (tenpString, new
Si ngl ePreci sion((float)joy));

tenpString = new String("jointOrientations.z");
i f(articul ati onADU. get (tenpString) instanceof Doubl ePreci sion)
articul ati onADU. put (tenmpStri ng, new Doubl ePreci si on(joz));
el se if(articul ati onADU. get (tenpString) instanceof
Si ngl ePr eci si on)
articul ati onADU. put (tenmpString, new
Si ngl ePrecision((float)joz));

tempString = new String("jointOrientations.w');
if(articulati onADU. get (tenmpString) instanceof Doubl ePreci sion)
articul ati onADU. put (tenpString, new Doubl ePreci si on(jow));
el se if(articul ati onADU. get (tenpString) instanceof
Si ngl ePr eci si on)
articul ati onADU. put (tenpString, new
Si ngl ePrecision((float)jow);

Y/l end try
catch(Fi el dTypeException fte)

{
Systemerr.printin("Field Type not found: " + fte);

}// end catch
cat ch(Fi el dNot FoundException fnfe)

Systemerr.printin("Field not found: " + fnfe);
}// end catch

/1 Systemout.println("Send side ---
Articul ati onProtocol : entityChanged():articul ati onADU == \n" +
articulati onADU); [/ **xxxxxxxxxx+888888888888888888

/1 Serialize and send articulation data for the entity
byte[] data = serializeADU(articul ati onADU);

Set distroSet = AOMgetAO M).getDistributionSet(e, this);

EntityDi spatcher.getEntityD spatcher().sendPacket(this,

e.getl (),
di stroSet,
dat a);
}
/**
* Sets the joint nunber that this protocol is for
*/

public void setJoi nt Nunber (int pJoint)
{ jointNunber = pJoint;
}/ 1 end setJoi nt Nunber ()

/**

115

* Cets the joint nunber that this protocol is for
*/

public int getJointNumber ()

{ return jointNunber;

}/1 end getJoi nt Nunber ()

};

C. DBP ARTICULATION HIGH RESOLUTION SOURCE DOCUMENT

<?xm version="1.0"?>
<! DOCTYPE Pr ot ocol SYSTEM "./ Dynami cBehavi or Prot ocol . dt d">
<Pr ot ocol name="ARTI CULATI ON_STATE"
mar ker Posi ti on="0"
mar ker Type="or g. web3d. vrt p. dat at ypes. Unsi gnedByt e"
clientStub="http://some.url.conl baz">

<Type nane="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
val ue="file://org. web3d. vrt p. dat at ypes. Doubl ePr eci si on" ></ Type>

<Type name="org.web3d. vrtp. dat at ypes. Unsi gnedByt e"
value="file://org.web3d. vrt p. dat at ypes. Unsi gnedByt e" ></ Type>

<Type nane="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"
val ue="file://org. web3d. vrt p. dat at ypes. Si gnedl nt eger " ></ Type>

<l-- <Channel multicastAddress="225.7.8.30"
mul ti castPort = "4070" /> -->

<Channel nmulticast Address="225.8.7.1222"
mul ticastPort = "2020" />

<Packet Header nanme="RTP">
<Fi el d name="sequence"
t ype="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initial val ue="0"/>
<Fi el d nanme="ti nest anmp"
t ype="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initial vVal ue="0"/>
</ Packet Header >
<ADU nane="ARPPPDU"' nar ker Val ue="95">
<l-- <Field name="nar ker Val ue"
type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initialValue="95"/> -->
<Structure name="packet Resol ution">
<Fi el d name="resol uti on"
type="org. webh3d. vrt p. dat at ypes. Unsi gnedByt e"
initialVal ue="2"/>
</ Structure>

<Structure name="jointOrientations">

<Fi el d nanme="x"

116

type="org. web3d. vrt p. dat at ypes. Doubl ePreci si on
initial val ue="0.0"/>

<Field name="y"
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial Val ue="0.0"/>
<Fi el d name="2z"
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initial val ue="0.0"/>
<Field nanme="w'
type="org. web3d. vrt p. dat at ypes. Doubl ePr eci si on"
initialValue="0.0"/>
</ Structure>
</ ADU>

</ Pr ot ocol >

D. DBP ARTICULATION LOW RESOLUTION SOURCE DOCUMENT
<?xm version="1.0"?>
<! DOCTYPE Pr ot ocol SYSTEM "./Dynani cBehavi or Protocol . dtd">
<Pr ot ocol name="ARTI CULATI ON_STATE"
mar ker Posi ti on="0"
mar ker Type="or g. web3d. vrt p. dat at ypes. Unsi gnedByt e"
clientStub="http://some.url.conl baz">

<Type nane="org.web3d. vrtp. dat at ypes. Si ngl ePr eci si on"
val ue="file://org.web3d. vrtp. dat at ypes. Si ngl ePr eci si on"></ Type>

<Type nanme="org.web3d. vrt p. dat at ypes. Unsi gnedByt e"
val ue="file://org.web3d. vrt p. dat at ypes. Unsi gnedByt e" ></ Type>

<Type nane="org. web3d. vrtp. dat at ypes. Si gnedl nt eger"
val ue="file://org. web3d. vrt p. dat at ypes. Si gnedl nt eger " ></ Type>

<l-- <Channel multicast Address="225.7.8.30"
mul ti castPort = "4070" /> -->

<Channel nulticast Address="225.8.7.1222"
mul ticastPort = "2020" />

<Packet Header name="RTP">
<Fi el d name="sequence"

t ype="org. web3d. vrt p. dat at ypes. Si gnedl nt eger "
initialVal ue="0"/>

<Fi el d nanme="ti nest anmp"
type="org. web3d. vrt p. dat at ypes. Si gnedl nt eger"
initial val ue="0"/>
</ Packet Header >
<ADU nane="ARPPPDU' nar ker Val ue="95">

<l-- <Field nane="mar ker Val ue"

117

type="org. web3d. vrt p. dat at ypes. Unsi gnedByt e"
initial vVal ue="95"/> -->

<Structure nanme="packet Resol ution">
<Fi el d nane="resol uti on"
type="org. webh3d. vrt p. dat at ypes. Unsi gnedByt e"
initial Val ue="1"/>
</ Structure>
<Structure name="jointOrientations">
<Fi el d name="x"
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initial Val ue="0.0"/>
<Fi el d name="y"

type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initial val ue="0.0"/>

<Field name="z
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initial Val ue="0.0"/>
<Field name="w'
type="org. web3d. vrt p. dat at ypes. Si ngl ePr eci si on"
initialVal ue="0.0"/>
</ Structure>
</ ADU>

</ Pr ot ocol >

E. SUMMARY

The source code and source documents presented in this appendix work together

to provide both a high and low resolution capability for the DBP articulation protocol.

118

THISPAGE INTENTIONALLY LEFT BLANK

119

APPENDIX F

A. INTRODUCTION

This appendix shows how to produce an XML source document for an example

dynamic protocol created using an X3D Edit DBP Protocol editor.

B. DBP PROTOCOL EDITOR

An XML editor for DBP patterned after X3D Edit (Web 3D Consortium, 01),

authored by Don Brutzman, can be used to generate DBP protocols for use in NPSNET-

V. This DBP-Edit editor enables a user to create protocols using a symbolic GUI

interface, rather than requiring the tedium of typing the protocols.

BE 1D Profile Editor

File Edit Insert Selection Grammar Help

0|

B| BR[| =[] #]X|+ |0 8]&|0 B[

P
i
iz

v|e|=| =|a|s| 2e

&

iR ENEE |-
| Al

Elements |

B3 attribute

E attribute
| Aftribute Valug

name name

aoltip name CDATA #REQUI

e ditor TexiField

§EB<|

S| <7l version="1.0" encoding="UTF-8'?>

DOCTYPE DTDProfile SYSTEM “profile did">

=38 DTDPrafile: tille: DynamicBehaviorProtacol did Editor

=

=

&)

=)

=)

=}

=)

=}

8 stiribute: name: markervalue, toollip: markervalue CDATA #REQUIRED, editor: TextField
-0 element name: Array, tooltip: contains (Field|Structure)

- BB atiribute: name: name, tooltip: name COATA #REQUIRED, editor: TexField

"B atiribute: name: size, tooftip: size CDATA #REQUIRED, editor. TextField

-0 element name: Ghannel, {ooltip: EMPTY

- [EB atiribute: name dress, tooltip: COATA#REQUIRED, editor: TexField
B8 atiribute: name: mulicastPor, toaltip: multicastPont COATA#REQUIRED, editor: TextField
- B8 atribute: name: serverAddress, tooltip: sererAddress GDATA#IMPLIED, editor: TexdtField
... B atiribute: name: serverPor, tooltip: serverPort COATA #IMPLIED, editor: TextFiald
O element name Field toottin: EMPTY
8 sttribute nname CDATA#REQUIRED, editor. TexiField
i [EB atiribute: name: type, tooltip: type IDREF #REQUIRED, editar. TextField
B8 aftribute: name: initialvalue, tooltip: initialvalue COATA #REQUIRED, editor: TextField
-0 element name: List, tooltip: containg (Field|Structure)
-8 atiribute: name: name, tooltip: name CDATA #REQUIRED, editor: TexField
w8 atiribute: name: leng tooltip: leng CDATA#REQUIRED, editor: TextField
O element hame: PacketHeader, tooltip: containg (FieldStructurelArray|List+
" BB atiribute: name: name, tooltip: name CDATA #IMPLIED, editor: TextField
-8 element name: Protocol, toltip: contains (Type+ Channel, PacketHeader? ADU+)
-~ B8 atiribute: name: name, tooltip: name COATA#REQUIRED, editor: TextField
-8 atiribute: name: markerPosition, tooltip: markerPosition COATA #REQUIRED, editor: TexfField
i [EB atiribute: name: markerType, toaltin: markerType COATA #REQUIRED, editor: TextField
B8 atiribute: name: clientStub, tonltip: clientStub CDATA#IMPLIED, editor: TextField
O element hame: Structure, tooltip: containg (Field|ListiAray|Structure)+
“.EB atiribute: name: name, tooltip: name CDATA #REQUIRED, editor: TexField
-0 element name: Type, toaltip; EMPTY

Figure F.1 DBP profile editor to modify tooltips for elements and attributes

Messages

120

!DynamicBehaviorPrDtucuI.dtd Editor

File Edit Insert Selection Grammar Tools Help

=18l

R o] @|x[4|w[8]8|@(R]]|t]2]-]| =[a]B] k| 2]

D= =
==

l Standard

Elements | All Elemernts: |

f| = M:Thesis/dbpinertiaProtocolPacketLoRes.xmi

g ADU
b Protocal

B <7yl version="1.0" encoding="UTF-§"7>
EF) =IDOCTYPE Protocal SYSTEM "DynamicBehaviorP ratocal. did"=

Type: name: org.weh3dyrip datatypes.SinglePrecision, value: file:org.web3d.vrip datatypes SinglePrecision

Type: name: orgweb3dyip.datatypes. UnsignedByte, value: filedforg.web3dyrtp datatype s UnsignedBvte
Type: narne: orgweb3dyip datatypes. Signedinteger, value: filedforg web3d yrip datatypes Signedinteger

Channel: multicastaddress: 225.4.3.122, multicastPort: 1717
PacketHeader. name: RTP
- H Field: name: seguence, type: orgyweh3dyip.datatypes.Signedinteger, initialvalue: 0

pEBER DB

- ® Field: hame:timestarp, type: org web3dwip datatypes Signedinteger, initialValue: 0
- B ADU: name: IPPPOU, markeralue: 99
- El Figld: name: markervalue, typs: orgweh3d.vtp.datatpes. UnsighedByte, initialvalue: 99

B Structure: name: packetResolution
"l Figld: name: resalution, type: orgweh3dvip datatypes. UnsignedByte, initialvalue: 1
| Structure: name: Position

" . EMPTY
- B Field: name: % type: orgweb3dyip datatypes.SingleP Defines 2 Field data st cture
B Field:

: narnery, type: orgweb 3datp.datatypes. SingleP tevrsmommrETraTTE T

: ‘- B Field: name:z, type: orgweb3dyitp.datatypes. SinglePrecision, inifialvalue: 0.0
[B Structure: name: posRefTime
. - H Field: name: posTime, type: org web3d wip datatypes Unsighedinteer, inftialvalue: 0

g Protocol

E| B Structure: name: orRefTime
L H Field: name: orTime, type: org weh3d wiip. datatypes. Unsighedinteger, intialvalus: 0

Aftribute

gelE Structure: name: orientation

name

INERTIAL_PACKET

markerFosition

0 - B Field: name: orl, type: orgweb3dartp.datatypes SinglePrecision, initialvalue: 0.0

rmarkerType

org.weh3dvp.dataty... - H Field: name: or2, type: orgweb3datp.datatypes SinglePrecision, intialvalue: 0.0

clientStub

htpeiisorme.url.comibaz

- B Field: name: or3, type: orgweb3dyrtp datatypes SinglePrecision, infialvalue: 0.0

H Field: name: ord, type: orgaweb3d.vitp. datatypes. SinglePrecision, inialvalue: 0.0

Type: name: orgweh3dyip datatypes. Unsignedinteger, value: filedorg web3d wip datatypes Unsignedinteger

Messages

Figure F.2 DBP-Edit interface

C. DBP DATA-TYPE DEFINITION (DTD)

<?xm version="1.0" encodi ng="UTF-8"?>

<l-- Adtd for a flexible protocol description |anguage -->

<l-- Author: Don MG egor -->
<!-- Date: 3/13/2000-->
<l---->

<!-- The protocol tag encl oses sone descriptions about the protocol-->
<l-- itself, followed by the ADUs in the protocol. The + sign neans-->

<l-- one or nore, the ? neans zero or one.

<! ELEMENT Protocol ((Type+), Channel, (PacketHeader?), (ADU+))>

121

>

<l-- Attributes: name: The nane of the protocol (dis, etc.) -->

<l-- mar ker Posi ti on: the number of bytes to offset to | ook
for the field -->
<I-- that distingui shes between different
ADUs in the -->
<l-- pr ot ocol . -->
<l-- mar ker Type: The type of the data that distinguishes
bet ween ADUs. -->
<l-- This nmust be one of the listed Types bel ow.
byte, short -->
<l-- int, etc. -->
<l-- clientStub: The stub programwe use to tie syntax to
semanti cs. -->
<I ATTLI ST Protocol nane CDATA #REQUI RED
mar ker Posi ti on CDATA #REQUI RED
nmar ker Type CDATA #REQUI RED
clientStub CDATA #| MPLI ED>
<l-- Atype is just a string that describes a URL. The thing at that
| ocati on -->
<l-- has code for defining the type of data. These are the basic building
bl ocks -->
<!-- of the protocol; how we bootstrap up an initial set of basic types,
li ke -->
<l-- int, short, double, etc. -->
<! ELEMENT Type EMPTY>
<l-- Attributes: The type name is an ID, which neans it can be referenced
-->
<I-- elsewhere in the XML file. -->
<I ATTLI ST Type nane | D #REQUI RED
val ue CDATA #REQUI RED>
<l-- A MilticastGoup is just an elenent that can hold things |ike
mul ti cast -->
<l-- port, etc >

<! ELEMENT Channel EMPTY >

<l-- Attributes: address: ntast address used by this protocol. -->
<l-- port: ntast port to listen to for packets -->
<I ATTLI ST Channel mul ti cast Address CDATA #REQUI RED

mul ticast Port CDATA #REQUI RED
server Addr ess CDATA #!| MPLI ED
server Port CDATA #| WMPLI ED>

<l-- An ADU contains tags for various types of fields. The ADU tag mnust

contain -->

of

<l-- at least one field tag - a field, structure, Array, or List. -->

<l ELEMENT ADU ((Field | Structure | Array | List)+)>
<I ATTLI ST ADU nane CDATA #REQUI RED
mar ker Val ue CDATA #REQUI RED>

<l-- Field types, which are slightly tricky. There are four basic types

-->
<l-- fields: a primtive type, which describes something |ike a byte

122

<l-- or a float; a structured type, which can contain a several primtive

types; -->

<l-- an array, which has a fixed length repetition of Field or Structure;
-->

<l-- and a List, which has a variable | ength (per-packet) number or
repeitions -->

<l-- of a Field or a Structure. -->

<l-- The basic Field type, which describes one of the Types |isted above.

7 <l-- This is an enpty tag - all the information is contained in the tag
and <l-- -i-t>s attributes, not in anything the start and end tags surround. In
7 <l-- fact, you can't have anything between the tags - it's required to be
7 <!-- be enpty, usually done with <Field nanme="foo" type="hbyte"

initial Val ue="0"/> -->

<! ELEMENT Fi el d EMPTY>

<l-- Attributes: nane: Nanme for the field, such as "x" or "speed"
-->

<l-- type: basic datatype, nust be from Type |ist above
-->

<l-- initial Value: Default value for field , such as "0" or
B 7 A A

<I ATTLI ST Fi el d name CDATA #REQUI RED

type | DREF #REQUI RED
initial Val ue CDATA #REQUI RED>

<l-- The Structure tag defines an enclosing container for other fields.
This -->

<!-- lets us build up larger constructs, such as "Point" that contains
three -->

<l-- Fields, (x,y,z). or we could have a Strucutre that contains a
m xture -->

<l-- of Fields, lists, and other structures. >

<l ELEMENT Structure ((Field | List | Array | Structure)+)>

<l-- Attributes: name: the name of the structure. -->

<I ATTLI ST Structure nane CDATA #REQUI RED>

<l-- Information about the PacketHeader. This is intended to describe,
for -->

<!-- exanple, the RTP header for a packet. This is prepended to every
outgoing -->

<!-- payload, and used for routing, etc. This is really just an ADU

under cover -->

<l-- The Array tag nust contain either ONE Field tag or ONE Structure

tag. -->

<l-- This piece of data is repeated some nunber of tinmes. Under Array,
-->

<l-- this is a nunber that does not change, ever. If you say it has five
-->

<l-- elenents, it will always have space for five el enents.
-->

123

t he -

tells--

<!-- The Array, which is always sone parse-time defined |ength. -

< ELEMENT Array (Field | Structure)>

<l-- Attributes: nanme: Name of array -->
<l-- size: Nunmber of tinmes the el enent contained repeats.
<l-- must al ways be the sanme; cannot change after
;!>-- docunent is parsed. -->
<I ATTLI ST Array name CDATA #REQUI RED

si ze CDATA #REQUI RED>
<l-- The List elenment has a variable I ength, which may change from packet
<l-- to packet. The length of the list is defined in sonme other field in
<l-- the payload. W save a reference to that field as an attribute; at
<l-- runtime, we |ookup the value of the field to determ ne how | ong the
<l-- list will be in this instance. A List repeats either a primtive
;!-->- or a Structure zero or nore tines. -->

< ELEMENT List (Field | Structure)>

<l-- Attributes: Nane: Name of the |ist -->
<I-- | engt hFi el dNane: narme of the field in this payl oad that
>

<l-- us how long this list is. -->

<I ATTLI ST Li st name CDATA #REQUI RED
| engt hFi el dName CDATA #REQUI RED>

<! ELEMENT Packet Header ((Field | Structure | Array | List)+)>
<l-- Attributes: nane: nane of the packet header, eg 'rtp'. -->

<I ATTLI ST Packet Header nane CDATA #| MPLI ED>

D. DBP PROFILE

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE DTDProfile SYSTEM "profile.dtd">

<DTDProfile title="Dynam cBehavi orProtocol .dtd Editor">
<def aul t s encodi ng="UTF- 8"

syst enLi t eral =" Dynani cBehavi or Prot ocol . dtd"/ >

(Field|

<el enent s>
<el enent nanme="ADU' tooltip="contains
Structure| Array| Li st)+
 Appl i cation Data Unit (ADU) definition.">
<attribute editor="TextField" name="nane" tooltip="nane CDATA

#REQUI RED' / >

<attribute editor="TextField" nanme="marker Val ue"

tool ti p="mar ker Val ue CDATA #REQUI RED"'/ >

</ el ement >
<el ement name="Array" tooltip="contains (Field|Structure)
 defines

an Array of Fields or Structures">

124

<attribute editor="TextField" name="nane" tooltip="nane CDATA
#REQUI RED' / >
<attribute editor="TextField" nanme="size" tooltip="size CDATA
#REQUI RED'/ >
</ el enent >
<el ement name="Channel " tool tip="EMPTY&*#10; Defi nes nul ti cast channel
paranet ers" >
<attribute editor="TextField" name="nulticastAddress"
tool ti p="mul ti cast Address CDATA #REQUI RED'/ >
<attribute editor="TextField" name="nulticastPort"
tool tip="nulticastPort CDATA #REQUI RED'/ >
<attribute editor="TextField" name="serverAddress"
tool ti p="server Address CDATA #l MPLI ED"'/ >
<attribute editor="TextField" nane="serverPort" tooltip="serverPort
CDATA #| MPLI ED'/ >
</ el enent >
<el ement nanme="Fi el d" tool ti p="EMPTY
 Defines a Field data
structure">
<attribute editor="TextField" name="nane" tooltip="nane CDATA
#REQUI RED' / >
<attribute editor="TextFi el d" nane="type" tooltip="type |DREF
#REQUI RED' / >
<attribute editor="TextField" nanme="initial Val ue"
tool tip="initial Val ue CDATA #REQUI RED"'/ >
</ el enent >
<el ement nane="List" tooltip="contains (Field|Structure)
 Defi nes
alist of Fields or Structures">
<attribute editor="TextField" name="nane" tooltip="nane CDATA
#REQUI RED' / >
<attribute editor="TextField" nane="I| engt hFi el dNane"
tool ti p="1 engt hFi el dNane CDATA #REQUI RED"/ >
</ el enent >
<el ement nane="Packet Header" tool ti p="contains
(Field|Structure| Array| Li st)+
 def i nes Packet Header contents">
<attribute editor="TextField" name="nane" tooltip="nane CDATA
#| MPLI ED'/ >
</ el enent >
<el enent nane="Protocol" tooltip="contains
(Type+, Channel , Packet Header ?, ADU+)
 Root el enent to define a Dynanic
Behavi or Protocol.">
<attribute editor="TextField" name="nane" tooltip="nane CDATA
#REQUI RED' / >
<attribute editor="TextField" name="narkerPosition"
tool ti p="mar ker Posi ti on CDATA #REQUI RED"/ >
<attribute editor="TextField" name="markerType" tooltip="nmarkerType
CDATA #REQUI RED'/ >
<attribute editor="TextField" nane="clientStub" tooltip="clientStub
CDATA #| MPLI ED'/ >
</ el enent >
<el ement nanme="Structure" tooltip="contains
(Field|List|Array| Structure)+
 defines a data Structure">
<attribute editor="TextField" name="nane" tooltip="nane CDATA
#REQUI RED' / >
</ el enent >
<el ement name="Type" tooltip="EMPTY
 defi nes a payl oad data
structure type">
<attribute editor="TextFi el d" nane="nane" tooltip="nanme |D
#REQUI RED' / >
<attribute editor="TextField" nane="val ue" tooltip="val ue CDATA
#REQUI RED' / >
</ el enent >
<el ement nanme="XM_._COMMENT" tool ti p="Coment -
Use it anywhere to
make the document clearer."/>

125

<el enent nanme="XM__TEXT" tool tip="TEXT"/>
<el ement name="XM__CDATA" tool ti p="CDATA Section -&*#10;Use it to
store marked-up text that you want to store as data."/>
<el ement name="XM__PI" tooltip="Processing Instruction (Pl) -
 Use
it to pass directions and information to prograns."/>
<el ement name="XM._DOCUMENT_TYPE" t ool ti p="Docunent Type."/>
</ el ement s>
<docunent s/ >
<pal ettes>
<t ool barpalette title="Standard">
<group el ement s="XM_._TEXT XM._CDATA XM._COMVENT XM__PI
XM__DOCUMENT_TYPE"/ >
</t ool bar pal ette>
<si debarpal ette all-visible="no" searchabl e="no" title="El enents">

<group el enents="ADU Array Channel Field List PacketHeader Protocol
Structure Type"/>

</ si debar pal ett e>
<si debarpal ette all-visible="yes" searchable="no" title="All
El emrent s" >
<group el enents="ADU Array Channel Field List PacketHeader Protocol
Structure Type"/>
</ si debar pal ett e>
</ pal ettes>
<i nmporters/>
<exporters/>
<t ool s>
<tool class-nane="comibmhrl.xmnl editor.extension.xsl.XSLHandl er"/>
</t ool s>
</ DTDProfil e>

E. SUMMARY
The documents presented in this appendix provide a DBP protocol editor that uses

X3D Edit to generate protocolsin XML, and an example dynamic protocol for usein

NPSNET-V.

126

LIST OF REFERENCES

Afonso, Francisco, Virtual Reality Transfer Protocol (VRTP): Implementing a Monitor
Application for the Real -Time Transport Protocol (RTP) Using the Java Media
Framework (JMF), Masters Thesis, Naval Postgraduate School, Monterey California
September 1999.

Alexander, Christopher and others, A Pattern Language, Oxford University Press, New
York, 1977.

Apache http server, The Apache Software Foundation, 2001. Information available at:
http://www.apache.org/ .

Brutzman, Don, Graphics Internetworking: Bottlenecks and Breakthroughs, Addison
Wesley, 1977.

Brutzman, Don, Zyda, Mike, Watsen, Kent and Macedonia, Mike,” virtual reality
transfer protocol (vrtp) Design Rationale,” Workshops on Enabling Technology:
Infrastructure for Collaborative Enterprises (WET ICE): Sharing a Distributed Virtual
Reality, Massachusetts Institute of Technology, Cambridge M assachusetts, June 18-20
1997.

Capps, Michadl and McGregor, Don, NPSNET-V, 2000. Information available at:
http://npsnet.ora/NPSNET-V /npsnetV-cga.pdf .

Eudora, LDAP Freaware Products, 2001. Information available at:
http://www.eudora.com/free/ldap.html.

Gamma, Erich and others, Design Patterns, Addison Wesley Longman, Inc., 1995.

Grand, Mark, Patterns in Java Volume 1, John Wiley & Sons, Inc., 1998.

127

Harold, Elliotte Rusty, XML Bible, IDG Worldwide Books Inc. 1999.

Jain, Rgj, The Art of Computer Systems Performance Analysis, John Wiley & Sons,
Inc. 1991.

McGregor, D. NPSNET-V, 2001. Information available at:
http://www.npsnet.org/~npsnet/v/index.html .

McKusick, Marshall Kirk and others, The Design and Implementation of the 4.4 BSD
[Unix] Operating System, Addison Wesley Publishing Company, Inc., 1996.

Peterson, L. and Davie, B., Computer Networks, Morgan Kaufman Publishers, 2000.

Singhal, S. and Zyda, M., Networked Virtual Environments, AddisonWesey
Publishing Company, Inc., 1999.

Stevens, W. Richard, TCP/IP lllustrated, Volume 1, Addison Wesley Publishing
Company, Inc., 1994.

Sun, The Source for Java| TM] Technology, 2001. Information available at:
http://java.sun.com/.

Wathen, Michael, Dynamic Scalable Network Area of Interest Management for Virtua
Worlds, Naval Postgraduate School, 2001.

Web 3D Consortium, Extensible 3D (X3D) Graphics Working Group, 2001.
Information available at: http://www.web3d.org/x3d.html.

128

THISPAGE INTENTIONALLY LEFT BLANK

129

N

INITIAL DISTRIBUTION LIST

Defense TechniCal INfOrmMatiON CaNter ... e e e e e e e e e e e e e e e e e e e ae e e e e e e e e e eaeaeaeaeseaaeeens
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

Dudley KNOX LiBrary.......cccociiieieee et e e ee st ae e se e sneensesnnnns
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

Dr. Don Brutzman, COOB UMI/BI ... e e e e e e e e e e e e
Nava Postgraduate School
Monterey, CA 93943-5101

DoN MCGregor, COOE C3..... ..ot sre s sneeeeenee e
Naval Postgraduate School
Monterey, CA 93943-5101

ANArg KGPOIKAL......c.eiieieiiiieee et
Naval Postgraduate School
Monterey, CA 93943-5101

Dr. MiChagl P. Ball@Y.......couieiieeeie ettt ettt sttt nneenne s
Technical Director, Marine Corps Training and Education Command
Commanding Generd
Marine Corps Combat Development Command, Code 46T
3300 Russdll Road
Quantico, VA 22134

DI PhIlIP S. BaITY ..ottt sttt st e nnesneenneenne
Chief, S&T Initiatives Division
Defense Modeling and Simulation Office
1901 N. Beauregard Street, Suite 500
Alexandria VA 22311

[R40] oS AN ST Tg (o] o I I 1 E RS

Fraunhofer Center for Research in Computer Graphics (CRCG)
321 South Main St
Providence, RI 02903

130

9. CUMIS BIaAIS....ceieieeie ettt et ettt ne e sae e re e
Ingtitute for Joint Warfare Analysis
Naval Postgraduate School
Monterey, CA 93940-5000

10. Gordon Bradley, Code OR,BIccoiiiiicecee e eae et ees
Naval Postgraduate School
Monterey, CA 93940-5000

11. Rex Buddenberg Code IS/BUL.......cc.oouiiieiece ettt
Naval Postgraduate School
Monterey, CA 93940-5000

12, FrEA BUIKIEY ...ttt sttt sttt bt et nnas
NAV SEA Undersea Warfare Center
Division Newport
Code 2231, Bldg 1171-3
1176 Howell Street
Newport, Rl 02841-1708\

(G S To o 0= 7= V7= RS
Information Operations, Inc.
1298 Bay Dale Dr.
Arnold, MD 21012

14. LTC Neil CalWallatercoviuiieeiiiiieieesie st
MCTSSA, Box 555171
Camp Pendelton, CA 92055-5171

IS 1 QO 1 o RS
NAV SEA Undersea Warfare Center
Division Newport
Code 2231, Building 1171-3
1176 Howell Street
Newport, Rl 02841-1708

O (o] = O [0 Y PR
Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311-1772

131

17. Colonel William Crain, USA ...ttt st
Defense Modeling and Simulation Office
1901 N. Beauregard St. Suite 500
Alexandria, VA 22311

18. Justin Couch and Alan HUASON.cooiuieiiiie ettt eree e seeaee e s beeeens
Y umatech, Inc
600 Malden Ave. East
Suite 202
Seattle, WA 98112

S I o I I T 1o S
Computer & Information Science and Engineering Department
University of Florida
Post Office Box 115120
322 Building CSE
Gainsville, FL 32611-6120

20. Dr. Tony Healey, CoUE MEJHYccoiiieeiee et ae et enne s
Naval Postgraduate School
Monterey, CA 93943-5101

A I = 10 0c =T N = 1 T
Advance Systems & Technology
National Reconnaissance Office
14675 Lee Rd
Chantilly, VA 20151-1714

22. S, DAVIA KWEK ...ttt sttt sne b nne s
The Mitre Corporation — M/S B155
202 Burlington Rd.
Bedford, MA 01730-1420

PG N (o] o o T =T (< o = TSRS
Electronic Sensors and Systems Sector
Northrop Grumman Corporation
PO Box 1488 — M S 9030
Anapolis, MD 21404

24. Maor Dave Laflam, USA ...ttt
Army Model and Simulation Office
Office of the Deputy Chief of Staff for Operations and Plans
1111 Jefferson Davis Highway
Crystal Gateway North (Suite S03E)
Arlington, VA 22202

132

25. Dr. Francisco Loaiza and Dr. EUJENE SIMAITIS.......cooeiiireenieeie e
Ingtitute for Defense Analyses
Systems Evaluation Division
1801 N. Beauregard St.
Alexandria, VA 22311

26. Dr. R BOWEN LOFIN ..ottt ettt
Director of Simulation Programs
VirginiaModeling Analysis & Simulation Center
Old Dominion University
7000 College Dr
Suffolk, VA 23435

A D = | I I e o o USRS
Director, Army Moddl & Simulation Office
Crystal Gateway North Suite 503E
1111 Jefferson Davis Highway
Arlington, VA 22202

P I Y LGN = w0 (o=
Chief Scientist and Technical Director
US Army STRICOM
12350 Research Parkway
Orlando, FL 32826-3276

29. Fahrid Mamaghaniccceieeieiieiicie et e et e sre e neeneeas
19223 SE 45" St
|ssaquah, WA 98027

G0\ o= I\ o @ o 1RSSR
Monterey Bay Aquarium Research Institute (MBARI)
PO Box 628
Moss Landing, CA 95039-0628

G IO o0 Tox 1Y ="] RSN
USMC Program Office, D12
52560 Hull St.
San Diego, CA 92152-5001

133

32. Capt Mark Murray USAF
Joint Battlespace Infosphere (JBI)
AFRL/IFSE
Building 3, Room E1078
525 Brooks Road
Rome, NY 13441-4505

33. Michael MyjaKcccccevevvneircecie
Vice President and CTO
The Virtua Workshop
PO Box 98
Titusville, FL 32781

34. Ned Park, Presidentcccccccveeeuneee.
Nexternet, Inc.
2900 Gordon Ave.
Suite 202
Santa Clara, CA 95051

35. Marty Paulsen........ccccceeveeevvccieennnne
Analytic Graphics, Inc.
3760 Killroy Airport Way
Suite 270
Long Beach, CA 90806

36. George Philips......cccovveveeceececciecen
CNO, N6M1
2000 Navy Pentagon
Room 4C445
Washington, DC 20350-2000

37. David Prattccoeveeeieeieeceecee e,
SAIC 12479 Research Parkway
Orlando, FL 32826-3248

38. Dr. Katherine Morseoevveeeeeveeene.
2550 Fifth Ave, Ste 725
San Diego, CA 92103

39. Dr. Mark Pullen & Dr. Robert Simon

Department of Computer Science/C3l Center MS4AS

George Mason University
FairFax, VA 22030

134

40. DI, RICAIT PUK ...ttt sttt et e e sre e nneenneas
President
Intelligraphics Incorporated
7644 Cortina Court
Carlshad, CA 92009-8206

41. CAPT Jason QUIGIEY USAF ..ottt st nes
Joint Battlespace Infosphere (JBI)
AFRL/IFSE
Building 3, Room E1078
525 Brooks Road
Rome, NY 13441-4505

42. Dr. Martin REATYcoiuiiieeiieie ettt ettt s ne e
SRI International, EK219
333 Ravenswood Avenue
Menlo Park, CA 94025

43. Dr. R. Jay ROIANd, PreSIdentcccueiieeceeeesie et
Rolands and Associates
500 Sloat Avenue
Monterey CA 93940

44, RADM Paul SUHIVAN, USNoooiiiiieiie ettt ettt s
Director, Submarine Warfare Division N77
2000 Navy Pentagon, 4D542
Washington, DC 20350-2000

A5, Craig SWANSONceveeeiesieerieeeesseesteeaesseesseessesseesseasessseeseaseesseessessessseessesssessesssesseessesssnns
Science Applications International Corporation
Information Systems Division
1710 SAIC Dr.
Mclean, VA 22102

46. CAPT RODEr VOIGt, USN ..ottt s enee s
Chair, Electrical Engineering Department
U.S. Naval Academy
Annapolis, MD 21402

A7, JOCWNVIHTTAIMS. ..ottt eaeeeeeeaeennenees

3421 Bonita Vista Lane
Santa Rosa, CA 95404

135

S I (O A 1= o = | 11 SO SN
HQMC C4l Plans and Policy Division
2 Navy Annex
Washington, D.C. 20380-1775

9. WaAtEr H. ZIMIMEX'S ...ttt te e s seeeesneesseeneesneesseeneens
Defense Threat Reduction Agency
CPOC
6801 Telegraph Road
Alexandria VA 22310-3398

50. Dr. Michael Zyda, COUBCTIZKccoiiiiiiiieiiee et s
Director, Modeling Virtual Environments and Simulation (MOVEY) Institute
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940-5000

136

